
CHRISTIAN EMINENT COLLEGE, INDORE

(Academy of Management, Professional Education and Research)

An Autonomous Institution Accredited with ‘A’ Grade by NAAC

E-Content

oonn

““NNUUMMBBEERR SSYYSSTTEEMM””

Prepared By: Prof. C.K.Tiwari

Department of Computer Science & Electronics

UNIT-1: NUMBER SYSTEMS

 Decimal, Binary, Octal And Hexa-Decimal Number System

 And Their Interconversion.

 Binary And Hexadecimal Addition, Subtraction And

Multiplication

 1’s And 2’s Compliment Methods Of Addition/Subtraction

OBJECTIVES

After going through this unit, you will be able to

 understand the decimal, binary, octal and hexadecimal number systems

 convert from one number system into another

 apply arithmetic operations to binary numbers

.

INTRODUCTION

The binary number system and digital codes are fundamental to computers. In this chapter,

the binary number system and its relationship to other systems such as decimal,

hexadecimal, and octal are introduced. Arithmetic operations with binary numbers are

discussed to provide a basis for understanding how computers and many other types of

digital systems work.

NUMBER SYSTEMS

A number system relates quantities and symbols. The base or radix of a number system

represents the number of digits or basic symbols in that particular number system. In

decimal system the base is 10, because of use the numbers 0, 1, 2,3,4,5,6,7,8 and 9.

Binary Number System

A binary number system is a code that uses only two basic symbols. The digits can be

any two distinct characters, but it should be 0 or 1. The binary equivalent for some decimal

numbers are given below

decimal 0 1 2 3 4 5 6 7 8 9 10 11

binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011

Each digit in a binary number has a value or weight. The LSB has a value of 1. The

second from the right has a value of 2, the next 4 , etc.,

16 8 4 2 1

24 23 22 21 20

Binary to decimal conversion:

(1001)2 = X10

1001 =1x23 + 0x22 + 0x21 +1x20

=8+0+0+1

(1001)2 = (9)10

Fractions:
For fractions the weights of the digit positions are written from right of the binary

point and weights are given as follows.

2-1 2-2 2-3 2-4 2-5

E.g.:

E.g.:

(0.0110) 2= X10

=0x2-1 + 1x2-2+ 1x2-3 + 0x2-4

=0 x0.5 + 1x0.25 + 1x0.125 + 0x0.0625

= (0.375)10

(1011.101) 2=X10

=1x23 + 0x22 + 1x21 + 1x20 + 1x2-1 + 0x2-2 + 1x2-3

=8 + 0 + 2 + 1 + 0.5 + 0 + 0.125

= (11.625)10

Decimal to Binary Conversion:
(Double Dabble method)

In this method the decimal number is divided by 2 progressively and the remainder

is written after each division. Then the remainders are taken in the reverse order to

form the binary number.

E.g.:

(12)10 = X2

(12)10 = (1100)2

E.g.:

(21)2 = X2

(21)2 = (10101)2

Fractions:

The fraction is multiplied by 2 and the carry in the integer position is written after

each multiplication. Then they are written in the forward order to get the

corresponding binary equivalent.

E.g.:

(0.4375)10 = X2

2 x 0.4375 = 0.8750 => 0

2 x 0.8750 = 1.750 => 1

2 x 0. 750 = 1.5 => 1

2 x 0.5 = 1.0 => 1

(0.4375)10 = (0.0111)2

Octal Number System

Octal number system has a base of 8 i.e., it has eight basic symbols. First eight

decimal digits 0, 1,2,3,4,5,6,7 are used in this system.

Octal to Decimal Conversion:

In the octal number system each digit corresponds to the powers of 8. The weight of

digital position in octal number is as follows

84 83 82 81 80 8-1 8-2 8-3

To convert from octal to decimal multiply each octal digit by its weight and add the

resulting products.

E.g.:

(48)8 = X10

48 = 4 x 81 + 7 x 80

= 32 + 7

= 39

(48)8 = (39)10

E.g.:

(22.34)8 = X10

22.34 = 2 x 81 + 2 x 80 + 3 x 8-1 + 4 x 8-2

=16 + 2 + 3 x 1/8 +4 x 1/64

= (18.4375)

(22.34)8 = (18.4375)10

Decimal to Octal Conversion:

Here the number is divided by 8 progressively and each time the remainder is written

and finally the remainders are written in the reverse order to form the octal number. If

the number has a fraction part, that part is multiplied by 8 and carry in the integer part

is taken. Finally the carries are taken in the forward order.

E.g.:

(19.11)10 = X8

0.11 x 8 = 0.88 => 0

0.88 x 8 = 7.04 => 7

0.04 x 8 = 0.32 => 0

0.32 x 8 = 2.56 => 2

0.56 x 8 = 4.48 => 4

(19.11)10 = (23.07024)8

Octal to Binary Conversion:

Since the base of octal number is 8, i.e., the third power of 2, each octal number is

converted into its equivalent binary digit of length three.

E.g.:

(57.127)8 = X2

5 7 . 1 2 7

101 111 . 001 010 111

(57.127)8 = (101111001010111)2

Binary to Octal Conversion:

The given binary number is grouped into a group of 3 bits, starting at the octal point

and each group is converted into its octal equivalent.

E.g.:

(1101101.11101)2 = X8

001 101 101.111 010

1 5 5 . 7 2

(1101101.11101)2 = (155.72) 8

Hexadecimal Number System:

The Hexadecimal number system has a base of 16. It has 16 symbols from 0

through 9 and A through F.

Decimal Hexadecimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Binary to Hexadecimal:
The binary number is grouped into bits of 4 from the binary point then the

corresponding hexadecimal equivalent is written.

E.g.:

(100101110 . 11011) 2 = X16

0001 0010 1110 . 1101 1000

1 2 E . D 8

(100101110 . 11011) 2 = (12E . D8)16

Hexadecimal to binary:

Since the base of hexadecimal number is 16, i.e., the fourth power of 2, each

hexadecimal number is converted into its equivalent binary digit of length four.

E.g.:

(5D. 2A)16 = X2

5 D . 2 A

0101 1101 . 0010 1010

(5D. 2A)16 = (01011101.00101010)2

Decimal to Hexadecimal:

The decimal number is divided by 16 and carries are taken after each division and

then written in the reverse order. The fractional part is multiplied by 16 and carry is

taken in the forward order.

E.g.:

(2479.859)) 10 = X 16

16 x 0.859 = 13.744 => 13 (D)

16 x 0.744 = 11.904 => 11 (B)

16 x 0.904 = 14.464 => 14 (E)

16 x 0.464 = 7.424 => 7

16 x 0.424 = 6.784 => 6

(2479.859)10 = (9AF.DBE76)16

Hexadecimal to Decimal:

Each digit of the hexadecimal number is multiplied by its weight and then added.

E.g.:

(81.21) 16 = X10

=8 x 161 + 1 x 160 + 2 x 16-1 + 1 x 16-2
=8 x 16 + 1 x 1 + 2/16 + 1/162

= (129.1289)10

(81.21) 16 =(129.1289)10

Binary Arithmetic Opeartion

Binary Addition:
To perform the binary addition we have to follow the binary table given below.

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 => plus a carry-over of 1

Carry-overs are performed in the same manner as in decimal arithmetic. Since 1 is the

largest digit in the binary system, any sum greater than 1 requires that a digit be

considered over.

E.g.:

111 1010 11.01

_110 _1101 101.11

1001 10111 1001.00

Binary Subtraction:

To perform the binary subtraction the following binary subtraction table should be

followed.

0 – 0 = 0

1 – 0 = 1

1 – 1 = 0

0 – 1 = 1 with a borrow of 1 is equivalent to 10 – 1 = 1

E.g.:

E.g.:

111

010

101

110.01

100.10

001.11

1’s complement:

To obtain 1’s complement of a binary number each bit of the number is subtracted

from 1.

E.g.:

Binary number 1’s Complement

0101 1010

1001 0110
1101 0010
0001 1110

Thus 1’s complement of a binary number is the number that results when we change

each 0 to a 1 and each 1 to a 0.

1’s complement subtraction:

Instead of subtracting the second number from the first, the 1’s complement of the

second number is added to the first number. The last carry which is said to be a END

AROUND CARRY, is added to get the final result.

E.g.:

7 - 111 -----------------> 111 +

3 011 1’s complement 100

4 1011 +

└→1

100  result

If there is no carry in the 1’s complement subtraction, it indicates that the result is a

negative and number will be in its 1’s complement form. So complement it to get the

final result.

.:

8 - 1000 -----------------> 1000 +

10 1010 1’s complement 0101

 4 1101 1’s complement - 0010 

result

The following points should be noted down when we do 1’s complement subtraction.

1. Write the first number (minuend) as such.

2. Write the 1’s complement of second number(subtrahend)

3. Add the two numbers.

4. The carry that arises from the addition is said to be “end around carry”.

5. End-around carry should be added with the sum to get the result.

6. If there is no end around carry find out the 1’s complement of the sum and put

a negative sign before the result as the result is negative.

2’s Complement:

2’s complement results when we add ‘1’ to 1’s complement of the given number i.e.,

2’s complement =1’s complement + 1

Binary Number 1’s complement 2’s complement

1010 0101 0110

0101 1010 1011

1001 0110 0111
0001 1110 1111

2’s Complement Subtraction:
Steps:

1. Write the first number as such

2. Write down the 2’s complement of the second number.

3. Add the two numbers.

4. If there is a carry, discard it and the remaining part (sum) will be the result

(positive).

5. If there is no carry, find out the 2’s complement of the sum and put negative

sign before the result as the result is negative.

E.g.:

1) 10 - 1010 -----------------> 1010 +

8 1000 2’s complement 1000
2 10010

0010  result

2) 5 - 0101 -----------------> 0101 +

12 1100 2’s complement 0100

4 1001 2’s complement – 0111

result

Binary multiplication:
The table for binary multiplication is given below

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1

E.g.:

1011 x 110

1011 x

 110

0000

1011

1011

1000010_

E.g.:

101.01 x 11.01

101.01 x

 11.01 101 01

00000

10101

_10101

10001.0001

Binary division:
The table for binary division is as follows.

0 ÷ 1 = 0

1 ÷ 1 = 1

As in the decimal system division by zero is meaning less.

.:

1) 1100 ÷ 11

100_

11│1100

│11

0

2) 1001 ÷ 10

_100.1

10 │1001

│10

0010

 10

0

BCD Addition

Binary Coded Decimal(BCD) is a way to express each of the decimal digits with a

binary code. There are only ten code groups in the BCD system. The 8421 code is a

type of BCD code. In BCD each decimal digit , 0 through 9 is represented by a binary

code of four bits. The designation of 8421 indicates the binary weights of the four

bits (23,22,21,20). The largest 4-bit code is 1001. The numbers 1010, 1011, 1100, 1101,

1110, and 1111 are called forbidden numbers. The following table represents the

decimal and 8421 equivalent numbers.

Decimal digit 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

8421 Addition:

In 8421 addition, if there is a carry or if it results in a forbidden group, then 0110(6)

should be added in order to bring the result to the 8421 mode again.

E.g.:
8

+

1000 +

 7 0111

15 1111
 + 0110

 0001 0101

E.g.:

18 + 0001 1000 +

 2 0000 0010

20 0001 1010
 + 0000 0110
 0010 0000

Alphanumeric code

Computers, printers and the other devices must process both alphabetic and numeric

information. Serial coding systems have been developed to represent alphanumeric

information as a series of 1’s and 0’s. The characters to be coded are alphabets(26),

numerals (10) and special characters such as +,-, /,*, $ etc,

In order to code a character, string of binary digits is used. In order to ensure

uniformity in coding, two standard codes have been used.

1. ASCII: American Standard Code for Information Interchange.

2. EBCDIC: Extended Binary Coded Decimal Interchange Code. It is an 8 bit

code.

ASCII is 7-bit code of the form X6, X5, X4, X3, X2, X1, X0 and is used to code two

types of information. One type is the printable character such as alphabets, digits and

special characters. The other type is known as control characters which represent the

coded information to control the operation of the digital computer and are not printed.

CHECK YOUR PROGRESS 1

1. 2 x 101 + 8 x 100 is equal to

(a) 10 (b) 280 (c) 2.8 (d) 28

2. The binary number 1101 is equal to the decimal number

(a) 13 (b) 49 (c) 11 (d) 3

3. The decimal 17 is equal to the binary number

(a) 10010 (b) 11000 (c) 10001 (d) 01001

4. The sum of 11010 + 01111 equals

(a) 101001 (b) 101010 (c) 110101 (d) 101000

Unit 2: LOGIC GATES

AND Gate

A gate is simply an electronic circuit which operates a one or more signals to produce

an output signal. The output is high only for certain combination of input signals.

An AND gate (Figure 1.1) has a high output only when all inputs are high. The

output is low when any one input is low.

Figure 1.1 AND gate

Boolean expression for AND gate operation is

Y=A . B

Truth table

A B Y = A . B

0 0 0

0 1 0

1
1

0
1

0
1

OR gate

An OR gate (Figure 1.2) produces a high output when any or the entire inputs are

high. The output is low only when all the inputs are low.

Figure 1.2 OR gate

The Boolean expression for an OR gate is

Y=A+B

Truth table:

A B Y = A + B

0 0 0

0 1 1

1 0 1

1 1 1

NOT gate:

A NOT gate (Figure 1.3) is also called an inverter. The circuit has one input and one

output. The output is the complement of the input. If the input signal is high, the

output is low and vice versa.

Figure 1.3 NOT gate

The Boolean expression for NOT gate is

Y = Ā

Truth table:

A Y = Ā

0
1

1
0

If two NOT gates are cascaded then the output will be same as the input and the

circuit is called buffer circuit.

NAND gate

A NAND (Figure 1.4) gate has two or more input signals but only one output signal.

All input signals must be high to get a low output. When one AND gate is combined

with a NOT gate, a NAND gate is obtained.

Figure 1.4 NAND gate

Truth table:

A B

Y =

A

. B

0 0 1

0 1 1

1 0 1

1 1 0

NOR gate:

NOR gate (Fig. 1.5) has two or more input signals and one output signal. It consists of

one OR gate followed by an inverter. A NOR gate produces a high output only when

all the inputs are low.

Figure 1.5 NOR gate

Truth table:

A

B

Y =

A

+ B

0 0 1

0 1 0

1 0 0

1 1 0

XOR gate

XOR (Figure 1.6) gate is an abbreviation of exclusive OR gate. It has two inputs and

one output. For a two input XOR gate, the output is high when the inputs are different

and the output is low when the inputs are same. In general, the output of an XOR gate

is high when the number of its high inputs is odd. The Boolean expression of the

XOR gate is _ _

Y = A.B + A.B

a) Logic diagram

Figure 1.6 XOR gate

Truth table

A B Y = A B

0 0 0

0 1 1

1 0 1

1 1 0

Karnaugh map

• Karnaugh map (K-map) allows viewing the function in a
picture form

• Containing the same information as a truth table

• But terms are arranged such that two neighbors differ in
only one variable

• It is easy to identify which terms can be combined

• Example:

A map with 3 variables
A B

AB

C 00 01 11 10

0

1

C F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

1

Location of Min-terms in K-maps

x
1

x
2

x
3

x x

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

0

1

0

1

0

1

0

1

m 0
x

1 2

3 00 01 11 10
m 1

m
0

2

m 3

m 4

m 5

m 6

m 7

1

(b) Karnaugh map

m2 + m6 = x1’ x2 x3’ + x1 x2 x3’

= x2 x3’

(a) Truth table

2

Simplification using K-map

• Groups of ‘1’s of size 1x1, 2x1, 1x2, 2x2, 4x1, 1x4, 4x2,

2x4, or 4x4 are called prime implicants (p.159 in

textbook).

AB AB

C 00 01 11 10 C 00 01 11 10

0 0

1 1

• A ‘1’ in the K-map can be used by more than one group

• Some rule-of-thumb in selecting groups:

– Try to use as few group as possible to cover all ‘1’s.

– For each group, try to make it as large as you can

(i.e., if you can use a 2x2, don’t use a 2x1 even if that

is enough).

3

Karnaugh maps with up to 4 variables

• Example: 1, 2, 3, and 4 variables maps are
shown below

A
A B 0 1

0 0 0 1 0
1 1 1 0 1

AB

C 00 01 11 10

0

1

AB

CD 00 01 11 10

00 1 1 1 1
01 1 0
11 0 0
10 0 1 1 0

• What if a function has 5 variables?

5

m 0 m 2 m 6 m 4

m 1 m 3 m 7 m 5

1 0 1 1
1 1 1 0

1

1 0 1 1

1 1 1 0

1 0 1 1

1 1 1 0

1 1 1 1
1 0 1 0

0 1
1 1

Examples of 3-Variable K-map

x
1
x

2
x3

00 01 11 10

0 0 0 1 1
f = x1x3 + x2x3

1 1 0 0 1

x1x2
x

3 00 01 11 10

0 1 1 1 1

1 0 0 0 1
f = x3 + x1x2

4

Farmer’s example and truth tables

6

10

Farmer’s example truth tables and K-maps

• With three variables, we do not want
W and G or G and C to be equal (both
0 or both 1) at the same time

• With four variables, it is not a
problem if F is also the same

W G C A1 A2

A1

WG

C 00 01 11 10

0

1

WG

CF 00 01 11 10

00

01

11

10

A1 =

A2 =

W G C F A2

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 0
7

K-map Example for Adder functions

S (A, B, C)  m(1,2,4,7)

Cout(A, B, C)  m(3,5,6,7)

S Cout
AB AB

C 00 01 11 10 C 00 01 11 10

0 0

1 1

S = A’B’C + A’BC’ + AB’C’ + ABC

Cout = BC + AC + AB

11

2

K-map for 5-variables functions

x 3 x4

x1 x2 x 1 x 2

00 01 11 10
x 3 x4

00 01 11

00 00

10

1

01 1 1 01 1 1

11 1 1 11 1 1

10 1 1 10 1 1

x 5 = 0 x5 = 1

f 1 = x 1 x3 + x 1 x3 x4 + x 1 x2 x3 x 5

8

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

A B C S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1
1 1 1 1 1

0 1 0 1
1 0 1 0

0 0 1 0
0 1 1 1

K-map for 5-variables functions

F(A,B,C,D,E) =  m(2,5,7,8,10,13,15,17,19,21,23,24,29,31)

F(A,B,C,D,E) = CE + AB’E + BC’D’E’ + A’C’DE’

9

K-map for
6-variable
functions

G(A,B,C,D,E,F)

=  m(2,8,10,18,24,26,34,

37,42,45,50,53,58,61)

G(A,B,C,D,E,F)

= D’EF’ + ADE’F + A’CD’F’

Lec 9

Minimization of POS Forms

x 3

x 1 x 2

00

0 1

01 11 10

1 0 0  x1 + x 3 

1 1 1 1 0

 x 1 + x 2 



POS minimization of f =  M(4, 5, 6)

12

Simplification of ‘g’ in 7-segment display

g= Z’YX’W’ +ZY’X’W’

+Z’YX’W +ZYX’W +ZY’X’W

+ Z’Y’XW +ZYXW +ZY’XW

+ Z’Y’XW’ +Z’YXW’ +ZYXW’ +ZY’XW’

ZY

XW

00

01

11

10

00 01 11 10

15

Minimization of Product-of-Sums Forms

ZY

XW 00 01 11 10

00 0
5
1

01 0 1

0

1

11 1
4

0
3
1

10 1 12 1

11

1

1

1

ZY

XW 00 01 11 10

00

01

11

10

g=(Z+Y+X) 1

.(Z+Y’+X’+W’) 2

.(Z’+Y’+X+W) 3

Cost = 18

(3 OR gates,

1 AND gates

14 inputs)

16

Simplification of ‘a’ in 7-segment display

a=Z’Y’X’W’ +ZYX’W’ +ZY’X’W’

+Z’YX’W +ZY’X’W

+ Z’Y’XW +Z’YXW +ZYXW

+ Z’Y’XW’ +Z’YXW’ +ZYXW’ +ZY’XW’

ZY

XW 00

00
1

1

01 11 10

0
2

1 1

01 0

11 1

10 1

5
1

1

0 1
6

3
1 0

4

1 1 1

Simplification of ‘a’ in POS Form

SOP: a=Y’W’

+ZW’ Cost =
ZY

XW

00

01

11

10

00 01 11 10
+Z’X

+YX

+Z’YW

+ZY’X’

(AND gates,

OR gates

inputs)

POS:

Cost =

(AND gates,

OR gates

inputs)

18

g=ZY’ 1 Cost = 22

+XW’ 2 (5 AND gates,

+ZW 3 1 OR gates

+Y’X 4 16 inputs)

+Z’YX’ 5

3

0
1

1 0
3

1

0 1 1 1

1 0
2

1 1

1 1 1 1

0 1 0 1

0 1 1 1

1 0 1 1

1 1 1 1

7-segment display

14

Minimization of 4-Var. Function in POS Form

x
x1x2

3
x

4 00 01 11 10

00 0 0 0 0  x3 + x4

01 0 1 1 0
 x + x 2 3

11 1 1 0 1

10 1 1 1 1

 x1 + x2 + x3 + x4


POS minimization of f =  M(0, 1, 4, 8, 9, 12, 15)

13

a=Y’W’ 1

+ZW’ 2

+Z’X 3

+YX 4

+Z’YW 5

+ZY’X’ 6

17

1 0 1 1

0 1 0 1

1 1 1 0

1 1 1 1

Examples
• Simplify the following function considering:

– the sum-of-products form -- the product-of-sums form

CD CD

AB

00

01

11

10

00 01 11 10 AB

00

01

11

10

00 01 11 10

20

Design of a SUB Unit

• An n-bit subtract unit can be designed in the same way

as an n-bit adder

• One bit subtract unit: It has two inputs A and B (B is

subtracted from A) and a borrow (w)

• Outputs: R (primary), W borrow (cascading)

• Borrow from one stage is fed to the next stage

• Truth table is shown

• An n-bit subtract circuit is shown

An-1 Bn-1 A1 B1 A0 B0

w w w w
Rn-1 R1 R0

1-bit sub 1-bit sub 1-bit sub

4

1 0 0 1

1 1 1 d

0 d 1 1

0 0 0 1

1 0 0 1

1 1 1 d

0 d 1 1

0 0 0 1

K-map with Don’t Care Conditions
• Don’t care condition is input combination that will never occur.

• So the corresponding output can either be 0 or 1.

• This can be used to help simplifying logic functions.

• Example: F(A,B,C,D)= m(1,3,7,11,15)+  D(0,2,5)

CD CD

AB 00 01 11 10 AB 00 01 11 10

00 d 1 1 d 00 d 1 1 d

01 0 d 1 0 01 0 d 1 0

11 0 0 1 0 11 0 0 1 0

10 0 0 1 0 10 0 0 1 0

F = CD+A’B’ F = CD+A’D

19

d: Don’t Care Condition

A B w (in) R w(out)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

 24

1-bit building blocks to make n-bit circuit

• Design a 1-bit circuit with proper “glue logic” to use it

for n-bits

– It is called a bit slice

– The basic idea of bit slicing is to design a 1-bit circuit and then

piece together n of these to get an n-bit component

• Example:

• A half-adder adds two 1-bit inputs A B

• Two half adders can be used to add 3 bits
0 0

• A 3-bit adder is a full adder

• A full adder can be a bit slice

to construct an n-bit adder

A B

S C

0 0

0 1 1 0

1 0 1 0
1 1 0 1

C S

21

Half Adder

Full adder & multi-bit ripple-carry adder

• Two half adders can be used to add 3

• n-bit adder can be built by full adders A3

• n can be arbitrary large B3

C3

Full

Adder

Cout3

Sum3

C B A B

A B

S C S

C S

A2
B2
C2

A1
Cout B1

Full

Adder

Cout2

Sum2

C

Sum

A
B

C

Full Cout

Adder Sum

C1

A0
B0
Ci

Full

Adder

Cout1

Sum1

Full

Adder

Cout0

Sum0

22

Half Adder

b4i-tbsit ripple-carry adder

Multiple Function Unit Design

• Design a unit that can do more than one function

• In that case, we can design a function unit for each

operation like ADD, SUB, AND, OR,

• And then select the desired output

• For example, if we want to be able to perform ADD and

SUB on two given operands A and B, and select any one

• Then the following set up will work

A

B
A

Result

B Select

23

SUB

MUX

ADD

ADD/SUB unit design – Better Idea Operation

Example: Find A-B

A=0101, B=0110

1’s comp. of B

(i.e., neg (B))

=1001

2’s comp. of B

=1001+1=1010

ADD/SUB ADD/SUB ADD/SUB ADD/SUB
0 1 1 1 0 1 1 1

A3
MUX 0 A2

MUX 0 A1
MUX 0

c

B3

0
B2

1
B1

1

A0
MUX 0

B0

0

0 c 0

R3 1

c 0

R2 1

c 1 c ADD/SUB

R1 1 R0 1
1

28

Better Idea:

A+neg(B)+1

00011

0101

+ 1001 1’s

1111

First Idea:

A+(neg(B)+1)

0000

0101

+ 1010 2’s

1111

One-Bit Adder

• Takes three input bits and generates two output bits

•

Adder Boolean Algebra

A B CI CO S

• Multiple bits can be cascaded • 0 0 0 0 0

 • 0 0 1 0 1

 • 0 1 0 0 1 C = A.B + A.CI+ B.CI

 • 0 1 1 1 0

 • 1 0 0 0 1 S = A.B.CI + A’.B’.CI+A’.B.CI’+A.B’.CI’

 • 1 0 1 1 0

 • 1 1 0 1 0

 • 1 1 1 1 1

29 30

5

ADD/SUB unit design – Better Idea
• 2’s complement generation of B is expensive

• We can take 1’s complement of B and add it to A

• Then we need to add 1 to the result

• This can be done by setting input carry=1 to n-bit adder

• For add , we simply add B to A with input carry = 0

• Selection signal ADD/SUB = 0 for ADD and 1 for SUB

• The block diagram is shown below

• MUX and inverter can be replaced by XOR (B, ADD/SUB)

ADD/SUB

1

An-1 MUX 0
Bn-1

ADD/SUB

1
ADD/SUB

1
A1

MUX 0

B1

A0
MUX 0

B0

c
1-bit add

Rn-1

1-bit add 1-bit add

c c c ADD/SUB

R1 R0 26

ADD/SUB unit design – First Idea

• Separate ADD and SUB units are expensive

• We can simplify the design

• A - B is the same as adding negation of B to A

• How to negate?

– 2’s complement (i.e., take 1’s complement and add 1)

– Adding 1 is also expensive

– It needs an n-bit adder in general

– However, we only need to add two bits in each stage

• In the first stage, we need to add 1’s complement of LSB and 1

• In other stages, we need to add carry output of previous bit to 1’s

complement of current bit

• We select B or negation of B depending on the

requirement

• We add A to the selected input to obtain the result
25

 1

1-bit add

 0

1-bit add

 0

1-bit add

 1

1-bit add

ADD/SUB unit design – Better Idea Example

Example: Find A-B

A=0101, B=0110

1’s comp. of B

(i.e., neg (B))

=

2’s comp. of B

= =

ADD/SUB

1
ADD/SUB

1
ADD/SUB

1
ADD/SUB

1

A3
MUX 0

B3

A2
MUX 0

B2

A1
MUX 0

B1

A0
MUX 0

B0

c
1-bit add 1-bit add 1-bit add 1-bit add

c c c c ADD/SUB

R3 R2 R1 R0

27

Better Idea:

A+comp(B)+1

1

0101

+ 1’s

First Idea:

A+(comp(B)+1)

0101

+ 2’s

6

Problem: ripple carry adder is slow
• Is a 32-bit ALU as fast as a 1-bit ALU?

• Is there more than one way to do addition?

– two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1 c2 =

c3 = b2c2 + a2c2 + a2b2 c3 =

c4 = b3c3 + a3c3 + a3b3 c4 =

Not feasible! Why?

32

Detecting Overflow

• No overflow when adding a positive and a negative

number

• No overflow when signs are the same for subtraction

• Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative

– or, adding two negatives gives a positive

– or, subtract a negative from a positive and get a negative

– or, subtract a positive from a negative and get a positive

• Consider the operations A + B, and A – B

– Can overflow occur if B is 0 ?

– Can overflow occur if A is 0 ?

31

Carry-look-ahead adder
• An approach in-between our two extremes

• Motivation:

– If we didn't know the value of carry-in, what could we do?

– When would we always generate a carry? gi = ai bi

– When would we propagate the carry? pi = ai + bi

• Did we get rid of the ripple?

c1 = g0 + p0c0

c2 = g1 + p1c1 c2 = g1 + p1g0 + p1p0c0

c3 = g2 + p2c2 c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = g3 + p3c3 c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 +

p3p2p1p0c0

Feasible! Why?

33

A 4-bit carry look-ahead adder

• Generate g and p term for

each bit

• Use g’s, p’s and carry in to

generate all C’s

• Also use them to generate

block G and P

• CLA principle can be used

recursively

34

Use principle to build bigger adders

CarryIn

a0

b0

a1
b1

a2
b2

a3

b3

CarryIn

ci + 1

• A 16 bit adder uses four 4-bit

adders

Ca rry-loo kahead unit • It takes block g and p terms
and cin to generate block carry

Re sult0 --3

AL U0
P0

G0
pi
gi

C1

a4

b4
a5

b5
a6

b6

a7
b7

CarryIn

Re sult4 --7

AL

P1

U1

G1

pi + 1

gi + 1

C2
ci + 2

a8

b8

a9
b9

a10

b10
a11

b11

CarryIn

Re sult8 --11

AL U2
P2
G2

pi + 2
gi + 2

bits out

• Block carries are used to

generate bit carries

– could use ripple carry of 4-bit

CLA adders

– Better: use the CLA principle

again!
C3

ci + 3

a12

b12
a13

b13
a14

b14

a15
b15

CarryIn

Re sult12 --15

AL U3
P3 pi + 3

G3 gi + 3
C4

ci + 4

CarryOut 35

Delays in carry look-ahead adders

• 4-Bit case

– Generation of g and p: 1 gate delay

– Generation of carries (and G and P): 2 more gate delay

– Generation of sum: 1 more gate delay

• 16-Bit case

– Generation of g and p: 1 gate delay

– Generation of block G and P: 2 more gate delay

– Generation of block carries: 2 more gate delay

– Generation of bit carries: 2 more gate delay

– Generation of sum: 1 more gate delay

• 64-Bit case

– 12 gate delays

36

 BOOLEAN ALGEBRA

Basic Laws of Boolean Algebra

Commutative law:

A + B = B + A

B + A = A + B

Associative law:

A + (B + C) = (A + B) + C

A. (B.C) = (A.B).C

Distributive law

A. (B + C) = A.B + A.C

Other laws of Boolean algebra:

1. A + 0 = A

2. A + 1 = 1

3. A + A = A

4. A + Ā = 1

5. A .0 = 0

6. A .1 = A

7. A .A = A

8. A . Ā = 0

=

9. A = A

10. A + A.B =A

11. A.(A + B) = A

12. (A + B).(A+C) = A + B.C

13. A + Ā.B =A + B

14. A.(Ā +B) = A.B

15. (A + B).(Ā + C) = A.C + Ā.B

16. (A + C).(Ā + B) = A.B + Ā.C

De Morgan’s Theorems:

I Theorem statement:

The complement of a sum is equal to the product of the complements.

 _ _

A + B = A . B

II Theorem Statement:

The complement of a product is equal to the sum of the complements.

 _ _

A . B = A + B

Proof of first theorem:

 _ _

To prove A + B = A . B

Case 1: A=0, B=0

 _

L.H.S => A + B = 0 + 0 = 0 = 1

_ _ _ _

R.H.S => A . B = 0 . 0 = 1 .1 = 1

Case 2: A=0, B=1

 _

L.H.S => A + B = 0 + 1 = 1 = 0

_ _ _ _

R.H.S => A . B = 0 . 1 = 1 .0 = 0

Case 3: A=1, B=0

 _

L.H.S => A + B = 1 + 0 = 1 = 0

_ _ _ _

R.H.S => A . B = 1 . 0 = 0 .1 = 0

Case 4: A=1, B=1

 _

L.H.S => A + B = 1 + 1 = 1 = 0

_ _ _ _

R.H.S => A . B = 1 . 1 = 0 .0 = 0

Truth table

A

B

_
A + B

_ _

A . B

0
0

1

1

0
1

0

1

1
0

0

0

1
0

0

0

Proof of second theorem:

 _ _

To prove A . B = A + B

Case 1: A=0, B=0

 _

L.H.S => A . B = 0 . 0 = 0 = 1

_ _ _ _

R.H.S => A + B = 0 + 0 = 1 + 1 = 1

Case 2: A=0, B=1

 _

L.H.S => A . B = 0 . 1 = 0 = 1

_ _ _ _

R.H.S => A + B = 0 + 1 = 1 + 0 = 1

Case 3: A=1, B=0

 _

L.H.S => A . B = 1 . 0 = 0 = 1

_ _ _ _

R.H.S => A + B = 1 + 0 = 0 +1 = 1

Case 4: A=1, B=1

 _

L.H.S => A . B = 1 . 1 = 1 = 0

_ _ _ _

R.H.S => A + B = 1 + 1 = 0 +0 = 0

Truth table

A

B

_
A . B

_ _
A + B

0
0

1

1

0
1

0

1

1
1

1

0

1
1

1

0

CHECK YOUR PROGRESS 2

1. An inverter performs an operation known as

(a) Complementation (b) assertion

(c) Inversion (d) both answers (a) and (c)

2. The output of gate is LOW when at least one of its inputs is HIGH. It is true for

(a) AND (b) NAND (c) OR (d) NOR

3. The output of gate is HIGH when at least one of its inputs is LOW. It is true for

(a) AND (b) OR (c) NAND (d) NOR

4. The output of a gate is HIGH if and only if all its inputs are HIGH. It is true for

(a)XOR (b) AND (c) OR (d) NAND

5. The output of a gate is LOW if and only if all its inputs are HIGH. It is true for

(a)AND (b) XNOR (c) NOR (d) NAND

6. Which of the following gates cannot be used as an inverter?

(a)NAND (b) AND (c) NOR (d) None of the above

7. The complement of a variable is always

(a) 0 (b) 1 (c) equal to the variable (d) the inverse of the variable

8. Which one of the following is not a valid rule of Boolean algebra?

(a) A + 1 = 1 (b) A = Ā (c) A.A = A (d) A + 0 = A

9. Which of the following rules states that if one input of an AND gate is always 1 ,

the output is equal to the other input ?

(a) A + 1 = 1 (b) A + A = A (c) A.A = A (d) A . 1 = A

SUMMARY

 A binary number is a weighted number in which the weight of each whole

number digit is a positive power of 2 and the weight of each fractional digit is

a negative power of 2.

 The 1’s complement of a binary number is derived by changing 1s to 0s and 0s

to 1s

 The 2’s complement of a binary number can be derived by adding 1 to the 1’s

complement.

 The octal number system consists of eight digits, 0 through 7.

 The hexadecimal number system consists of 16 digits and characters, 0

through 9 followed by A through F.

 The ASCII is a 7-bit alphanumeric code that is widely used in computer

systems for input/output of information.

 The output of an inverter is the complement of its input

 The output of an AND gate is high only if all the inputs are high

 The output of an OR gate is high if any of the inputs is high

 The output of an NOR gate is low if any of the inputs is high

 The output of an NAND gate is low only if all the inputs are high

 The output of an exclusive-OR gate is high when the inputs are not the same

Multiplexer and Demultiplexer
A multiplexer is a circuit that accept many input but give only one output. A demultiplexer function exactly in the reverse of a

multiplexer, that is a demultiplexer accepts only one input and gives many outputs. Generally multiplexer and demultiplexer

are used together, because of the communication systems are bi directional.

Mutliplexer:

Multiplexer means many into one. A multiplexer is a circuit used to select and route any one of the several input signals to a

signal output. An simple example of an non electronic circuit of a multiplexer is a single pole multiposition switch.

Multiposition switches are widely used in many electronics circuits. However circuits that operate at high speed require the

multiplexer to be automatically selected. A mechanical switch cannot perform this task satisfactorily. Therefore, multiplexer

used to perform high speed switching are constructed of electronic components.

Multiplexer handle two type of data that is analog and digital. For analog application, multiplexer are built of relays and

transistor switches. For digital application, they are built from standard logic gates.

The multiplexer used for digital applications, also called digital multiplexer, is a circuit with many input but only one output.

By applying control signals, we can steer any input to the output. Few types of multiplexer are 2-to-1, 4-to-1, 8-to-1, 16-to-1

multiplexer.

Following figure shows the general idea of a multiplexer with n input signal, m control signals and one output signal.

Understanding 4-to-1 Multiplexer:

The 4-to-1 multiplexer has 4 input bit, 2 control bits, and 1 output bit. The four input bits are D0,D1,D2 and D3. only one of

this is transmitted to the output y. The output depends on the value of AB which is the control input. The control input

determines which of the input data bit is transmitted to the output.

For instance, as shown in fig. when AB = 00, the upper AND gate is enabled while all other AND gates are disabled.

Therefore, data bit D0 is transmitted to the output, giving Y = Do.

Multiplexer Pin Diagram

http://www.electronicshub.org/electronics-mini-project-circuits/

If the control input is changed to AB =11, all gates are disabled except the bottom AND gate. In this case, D3 is transmitted

to the output and Y = D3.

 An example of 4-to-1 multiplexer is IC 74153 in which the output is same as the input.

 Another example of 4-to-1 multiplexer is 45352 in which the output is the compliment of the input.

 Example of 16-to-1 line multiplexer is IC74150.

Applications of Multiplexer:

Multiplexer are used in various fields where multiple data need to be transmitted using a single line. Following are some of

the applications of multiplexers -

1. Communication system – Communication system is a set of system that enable communication like transmission

system, relay and tributary station, and communication network. The efficiency of communication system can be

increased considerably using multiplexer. Multiplexer allow the process of transmitting different type of data such as

audio, video at the same time using a single transmission line.

4 to 1 Multiplexer Circuit Diagram – ElectronicsHub.Org

http://www.electronicshub.org/

2. Telephone network – In telephone network, multiple audio signals are integrated on a single line for transmission with

the help of multiplexers. In this way, multiple audio signals can be isolated and eventually, the desire audio signals

reach the intended recipients.

3. Computer memory - Multiplexers are used to implement huge amount of memory into the computer, at the same time

reduces the number of copper lines required to connect the memory to other parts of the computer circuit.

4. Transmission from the computer system of a satellite – Multiplexer can be used for the transmission of data

signals from the computer system of a satellite or spacecraft to the ground system using the GPS (Global Positioning

System) satellites.

Demultiplexer:

Demultiplexer means one to many. A demultiplexer is a circuit with one input and many output. By applying control signal,

we can steer any input to the output. Few types of demultiplexer are 1-to 2, 1-to-4, 1-to-8 and 1-to 16 demultiplexer.

Following figure illustrate the general idea of a demultiplexer with 1 input signal, m control signals, and n output signals.

Understanding 1- to-4 Demultiplexer:

The 1-to-4 demultiplexer has 1 input bit, 2 control bit, and 4 output bits. An example of 1-to-4 demultiplexer is IC 74155. The

1-to-4 demultiplexer is shown in figure below-

Demultiplexer Pin Diagram

The input bit is labelled as Data D. This data bit is transmitted to the data bit of the output lines. This depends on the value

of AB, the control input.

When AB = 01, the upper second AND gate is enabled while other AND gates are disabled. Therefore, only data bit D is

transmitted to the output, giving Y1 = Data.

If D is low, Y1 is low. IF D is high,Y1 is high. The value of Y1 depends upon the value of D. All other outputs are in low state.

If the control input is changed to AB = 10, all the gates are disabled except the third AND gate from the top. Then, D is

transmitted only to the Y2 output, and Y2 = Data.

Example of 1-to-16 demultiplexer is IC 74154 it has 1 input bit, 4 control bits and 16 output bit.

1 to 4 Dempultiplexer Circuit Diagram – ElectronicsHub.Org

http://www.electronicshub.org/

Applications of Demultiplexer:

1. Demultiplexer is used to connect a single source to multiple destinations. The main application area of demultiplexer

is communication system where multiplexer are used. Most of the communication system are bidirectional i.e. they

function in both ways (transmitting and receiving signals). Hence, for most of the applications, the multiplexer and

demultiplexer work in sync. Demultiplexer are also used for reconstruction of parallel data and ALU circuits.

2. Communication System - Communication system use multiplexer to carry multiple data like audio, video and other

form of data using a single line for transmission. This process make the transmission easier. The demultiplexer

receive the output signals of the multiplexer and converts them back to the original form of the data at the receiving

end. The multiplexer and demultiplexer work together to carry out the process of transmission and reception of data in

communication system.

3. ALU (Arithmetic Logic Unit) – In an ALU circuit, the output of ALU can be stored in multiple registers or storage units

with the help of demultiplexer. The output of ALU is fed as the data input to the demultiplexer. Each output of

demultiplexer is connected to multiple register which can be stored in the registers.

4. Serial to parallel converter - A serial to parallel converter is used for reconstructing parallel data from incoming serial

data stream. In this technique, serial data from the incoming serial data stream is given as data input to the

demultiplexer at the regular intervals. A counter is attach to the control input of the demultiplexer. This counter directs

the data signal to the output of the demultiplexer where these data signals are stored. When all data signals have been

stored, the output of the demultiplexer can be retrieved and read out in parallel.

Source: http://www.electronicshub.org/multiplexer-and-demultiplexer/

http://www.electronicshub.org/multiplexer-and-demultiplexer/

Flip flops

Flip flop are actually an application of logic gates. With the help of Boolean logic you

can create memory with them. Flip flops can also be considered as the most basic idea

of a Random Access Memory [RAM]. When a certain input value is given to them, they

will be remembered and executed, if the logic gates are designed correctly. A higher

application of flip flops is helpful in designing better electronic circuits.

The most commonly used application of flip flops is in the implementation of a feedback

circuit. As a memory relies on the feedback concept, flip flops can be used to design it.

There are mainly four types of flip flops that are used in electronic circuits. They are

1. The basic Flip Flop or S-R Flip Flop

2. Delay Flip Flop [D Flip Flop]

3. J-K Flip Flop

4. T Flip Flop

1. S-R Flip Flop

The SET-RESET flip flop is designed with the help of two NOR gates and also two

NAND gates. These flip flops are also called S-R Latch.

 S-R Flip Flop using NOR Gate

The design of such a flip flop includes two inputs, called the SET [S] and RESET [R].

There are also two outputs, Q and Q’. The diagram and truth table is shown below.

S-R Flip Flop using NOR Gate

From the diagram it is evident that the flip flop has mainly four states. They are

S=1, R=0—Q=1, Q’=0

This state is also called the SET state.

S=0, R=1—Q=0, Q’=1

This state is known as the RESET state.

In both the states you can see that the outputs are just compliments of each other and

that the value of Q follows the value of S.

S=0, R=0—Q & Q’ = Remember

If both the values of S and R are switched to 0, then the circuit remembers the value of

S and R in their previous state.

S=1, R=1—Q=0, Q’=0 [Invalid]

This is an invalid state because the values of both Q and Q’ are 0. They are supposed

to be compliments of each other. Normally, this state must be avoided.

 S-R Flip Flop using NAND Gate

The circuit of the S-R flip flop using NAND Gate and its truth table is shown below.

S-R Flip Flop using NAND Gate

Like the NOR Gate S-R flip flop, this one also has four states. They are

S=1, R=0—Q=0, Q’=1

This state is also called the SET state.

S=0, R=1—Q=1, Q’=0

This state is known as the RESET state.

In both the states you can see that the outputs are just compliments of each other and

that the value of Q follows the compliment value of S.

S=0, R=0—Q=1, & Q’ =1 [Invalid]

If both the values of S and R are switched to 0 it is an invalid state because the values

of both Q and Q’ are 1. They are supposed to be compliments of each other. Normally,

this state must be avoided.

S=1, R=1—Q & Q’= Remember

If both the values of S and R are switched to 1, then the circuit remembers the value of

S and R in their previous state.

 Clocked S-R Flip Flop

It is also called a Gated S-R flip flop.

The problems with S-R flip flops using NOR and NAND gate is the invalid state. This

problem can be overcome by using a bistable SR flip-flop that can change outputs when

certain invalid states are met, regardless of the condition of either the Set or the Reset

inputs. For this, a clocked S-R flip flop is designed by adding two AND gates to a basic

NOR Gate flip flop. The circuit diagram and truth table is shown below.

Clocked S-R Flip Flop

A clock pulse [CP] is given to the inputs of the AND Gate. When the value of the clock

pulse is ‘0’, the outputs of both the AND Gates remain ‘0’. As soon as a pulse is given

the value of CP turns ‘1’. This makes the values at S and R to pass through the NOR

Gate flip flop. But when the values of both S and R values turn ‘1’, the HIGH value of

CP causes both of them to turn to ‘0’ for a short moment. As soon as the pulse is

removed, the flip flop state becomes intermediate. Thus either of the two states may be

caused, and it depends on whether the set or reset input of the flip-flop remains a ‘1’

longer than the transition to ‘0’ at the end of the pulse. Thus the invalid states can be

eliminated.

2. D Flip Flop

The circuit diagram and truth table is given below.

D Flip Flop

D flip flop is actually a slight modification of the above explained clocked SR flip-flop.

From the figure you can see that the D input is connected to the S input and the

complement of the D input is connected to the R input. The D input is passed on to the

flip flop when the value of CP is ‘1’. When CP is HIGH, the flip flop moves to the SET

state. If it is ‘0’, the flip flop switches to the CLEAR state.

To know more about the triggering of flip flop click on the link below.

3. J-K Flip Flop

The circuit diagram and truth-table of a J-K flip flop is shown below.

J-K Flip Flop

A J-K flip flop can also be defined as a modification of the S-R flip flop. The only

difference is that the intermediate state is more refined and precise than that of a S-R

flip flop.

The behavior of inputs J and K is same as the S and R inputs of the S-R flip flop. The

letter J stands for SET and the letter K stands for CLEAR.

When both the inputs J and K have a HIGH state, the flip-flop switch to the complement

state. So, for a value of Q = 1, it switches to Q=0 and for a value of Q = 0, it switches to

Q=1.

The circuit includes two 3-input AND gates. The output Q of the flip flop is returned back

as a feedback to the input of the AND along with other inputs like K and clock pulse

[CP]. So, if the value of CP is ‘1’, the flip flop gets a CLEAR signal and with the

condition that the value of Q was earlier 1. Similarly output Q’ of the flip flop is given as

a feedback to the input of the AND along with other inputs like J and clock pulse [CP].

So the output becomes SET when the value of CP is 1 only if the value of Q’ was earlier

1.

The output may be repeated in transitions once they have been complimented for

J=K=1 because of the feedback connection in the JK flip-flop. This can be avoided by

setting a time duration lesser than the propagation delay through the flip-flop. The

restriction on the pulse width can be eliminated with a master-slave or edge-triggered

construction.

4. T Flip Flop

This is a much simpler version of the J-K flip flop. Both the J and K inputs are connected

together and thus are also called a single input J-K flip flop. When clock pulse is given

to the flip flop, the output begins to toggle. Here also the restriction on the pulse width

can be eliminated with a master-slave or edge-triggered construction. Take a look at the

circuit and truth table below.

T Flip Flop

TAKE A LOOK : TRIGGERING OF FLIP FLOPS

TAKE A LOOK : MASTER-SLAVE FLIP FLOP CIRCUIT

http://www.circuitstoday.com/triggering-of-flip-flops
http://www.circuitstoday.com/master-slave-flip-flop-circuit

Shift registers

1.0 Introduction

Shift registers are a type of sequential logic circuit, mainly for storage of

digital data. They are a group of flip -flops connected in a chain so that

the output from one flip-flop becomes the input of the next flip -flop.

Most of the registers possess no characteristic internal sequence of states.

All flip-flop is driven by a common clock, and all are set or reset

simultaneously.

In these few lectures, the basic types of shift registers are studied, such as

Serial In - Serial Out, Serial In - Parallel Out, Parallel In – Serial Out,

Parallel In - Parallel Out, and bidirectional shift registers. A special form

of counter - the shift register counter, is also introduced.

Register:

A set of n flip-flops

Each flip-flop stores one bit

Two basic functions: data storage (Figure 1.2) and data

movement (Figure 1.1).

Shift Register:

A register that allows each of the flip -flops to pass the stored

information to its adjacent neighbour

Figure 1.1 shows the basic data movement in shift registers.

Counter:

A register that goes through a predetermined sequence of states

Storage Capacity:

The storage capacity of a register is the total number of bits (1 or 0) of

digital data it can retain. Each stage (flip flop) in a shift register

represents one bit of storage capacity. Therefore the number of stages in a

register determines its storage capacity.

Figure 1.2: The flip-flop as a storage element.

Figure 1.1: Basic data movement in shift registers [Floyd]

 Serial In - Serial Out Shift Registers

The serial in/serial out shift register accepts data serially – that is, one bit

at a time on a single line. It produces the stored information on its output

also in serial form.

 Example: Basic four-bit shift register

Figure 2.1

A basic four-bit shift register can be constructed using four D flip -flops,

as shown in Figure 2.1.

The operation of the circuit is as follows.

The register is first cleared, forcing all four outputs to zero.

The input data is then applied sequentially to the D input of the

first flip-flop on the left (FF0).

During each clock pulse, one bit is transmitted from left to right.

Assume a data word to be 1001.

The least significant bit of the data has to be shifted through the

register from FF0 to FF3.

In order to get the data out of the register, they must be shifted out

serially. This can be done destructively or non-destructively. For

destructive readout, the original data is lost and at the end of the read

cycle, all flip-flops are reset to zero.

FF0 FF1 FF2 FF3

0 0 0 0 1001

The data is loaded to the register when the control line is HIGH (ie

WRITE). The data can be shifted out of the register when the control line

is LOW (ie READ).

Clear FF0 FF1 FF2 FF3

1001 0 0 0 0

WRITE:

FF0 FF1 FF2 FF3

1 0 0 1 0000

READ:

FF0 FF1 FF2 FF3

1 0 0 1 1001

Figure 2.2 illustrates entry of the four bits 1010 into the register. Figure

2.3 shows the four bits (1010) being serially shifted out of the register and

replaced by all zeros.

Figure 2.2: Four bits (1010) being entered serially into the register.

Figure 2.3: Four bits (1010) being serially shifted out of the register and replaced

by all zeros

2.2 5-bit serial in/serial out shift registers

Figure 2.4 illustrates entry of the five bits 11010 into the register.

Figure 2.4

 Serial In - Parallel Out Shift Registers

For this kind of register, data bits are entered serially in the same manner

as dis cussed in the last section. The difference is the way in which the

data bits are taken out of the register. Once the data are stored, each bit

appears on its respective output line, and all bits are available

simultaneously. A construction of a four-bit serial in - parallel out register

is shown below.

In the table below, we can see how the four-bit binary number 1001 is

shifted to the Q outputs of the register.

Clear FF0 FF1 FF2 FF3

1001 0 0 0 0
 1 0 0 0
 0 1 0 0
 0 0 1 0
 1 0 0 1

An 8-bit serial in/parallel out shift register (74HC164)

The 74HC164 is an example of an IC shift register having serial

in/parallel out operation. The logic diagram and logic block are shown in

Figure 3.1 (a),(b).

Figure 3.1: The logic diagram and logic block of 74HC164

Figure 3.2: The timing diagram of 74HC164

 Parallel In - Serial Out Shift Registers

A four-bit parallel in - serial out shift register is shown below. The

circuit uses D flip -flops and NAND gates for entering data (ie writing) to

the register.

D0, D1, D2 and D3 are the parallel inputs, where D0 is the most

significant bit and D3 is the least significant bit. To write data in, the

mode control line is taken to LOW and the data is clocked in. The data

can be shifted when the mode control line is HIGH as SHIFT is active

high. The register performs right shift operation on the application of a

clock pulse, as shown in the table below.

 Q0 Q1 Q2 Q3

Clear 0 0 0 0

Write 1 0 0 1

Shift 1 0 0 1

 1 1 0 0 1
 1 1 1 0 01
 1 1 1 1 001
 1 1 1 1 1001

 8-bit Parallel Load Shift Register (74HC165)

The 74HC165 is an example of an IC shift register that has a parallel

in/serial out operation. It can also be operated as serial in/serial out.

Figure 4.1 shows the logic diagram and logic symbol of 74HC165.

Figure 4.1: the logic diagram and logic symbol of 74HC165.

Figure 4.2: The timing diagram of 74HC165.

 Parallel In - Parallel Out Shift Registers

For parallel in - parallel out shift registers, all data bits appear on the

parallel outputs immediately following the simultaneous entry of the data

bits. The following circuit is a four-bit parallel in - parallel out shift

register constructed by D flip -flops.

Figure 5.1

The D's are the parallel inputs and the Q's are the parallel outputs. Once

the register is clocked, all the data at the D inputs appear at the

corresponding Q outputs simultaneously.

 4-bit Parallel-Access Shift Register (74HC195)

The 74HC195 can be used for parallel in/parallel out operation, serial

in/serial out and serial in/parallel out operations. Q3 is the output when it

is used for parallel in/serial out operation.

Figure 5.2: The 74LS195A 4-bit parallel access shift register

Figure 5.3: The timing diagram for 74LS195A shift register

 Bidirectional Shift Registers

The registers discussed so far involved only right shift operations. Each

right shift operation has the effect of successively dividing the binary

number by two. If the operation is reversed (left shift), this has the effect

of multiplying the number by two. With suitable gating arrangement a

serial shift register can perform both operations.

A bidirectional, or reversible, shift register is one in which the data can be

shift either left or right. A four-bit bidirectional shift register using D

flip-flops is shown below.

Here a set of NAND gates are configured as OR gates to select data

inputs from the right or left adjacent bistables, as selected by the

LEFT/RIGHT control line.

Alternative Circuit: [Floyd]

 4-Bit Bidirectional Universal Shift Registers (74HC194)

The 74HC194 is a universal bi-directional shift register. It has both serial

and parallel input and output capability.

[Floyd]

Figure 6.1:The 74HC194 4-bit bi-directional universal shift register

Figure 6.2:The timing diagram of 74HC194

 Shift Register / Counters

Two of the most common types of shift register counters are introduced

here: the Ring counter and the Johnson counter. They are basically shift

registers with the serial outputs connected back to the serial inputs in

order to produce particular sequences. These registers are classified as

counters because they exhibit a specified sequence of states.

 Ring Counters

A ring counter is basically a circulating shift register in which the output

of the most significant stage is fed back to the input of the least

significant stage. The following is a 4-bit ring counter constructed from

D flip-flops. The output of each stage is shifted into the next stage on the

positive edge of a clock pulse. If the CLEAR signal is high, all the flip -

flops except the first one FF0 are reset to 0. FF0 is preset to 1 instead.

Since the count sequence has 4 distinct states, the counter can be

considered as a mod-4 counter. Only 4 of the maximum 16 states are

used, making ring counters very inefficient in terms of state usage. But

the major advantage of a ring counter over a binary counter is that it is

self-decoding. No extra decoding circuit is needed to determine what

state the counter is in.

 Example: A 10-bit Ring Counter [Flyod]

Figure 7.1: 10-bit ring counter & its sequence

Figure 7.2: 10-bit ring counter waveform (initial state 1010000000)

 Johnson Counters

Johnson counters are a variation of standard ring counters, with the

inverted output of the last stage fed back to the input of the first stage.

They are also known as twisted ring counters. An n-stage Johnson

counter yields a count sequence of length 2n, so it may be considered to

be a mod-2n counter. The circuit below shows a 4-bit Johnson counter.

The state sequence for the counter is given in the table .

 Again, the apparent disadvantage of this counter is that the maximum

available states are not fully utilized. Only eight of the sixteen states

are being used.

 Beware that for both the Ring and the Johnson counter must initially

be forced into a valid state in the count sequence because they operate

on a subset of the available number of states. Otherwise, the ideal

sequence will not be followed.

 Example: 5 bit Johnson Counter [Flyod]

Figure 7.3: 5-bit Johnson Counter, its sequence and waveform

 Applications

Shift registers can be found in many applications. Here is a list of a few.

To produce time delay

The serial in -serial out shift register can be used as a time delay device.

The amount of delay can be controlled by:

1. the number of stages in the register

2. the clock frequency

Figure 8.1: The shift register as a time-delay device.



To simplify combinational logic

The ring counter technique can be effectively utilized to implement

synchronous sequential circuits. A major problem in the realization of

sequential circuits is the assignment of binary codes to the internal states

of the circuit in order to reduce the complexity of circuits required. By

assigning one flip -flop to one internal state, it is possible to simplify the

combinational logic required to realize the complete sequential circuit.

When the circuit is in a particular state, the flip -flop corresponding to that

state is set to HIGH and all other flip -flops remain LOW.

To convert serial data to parallel data

A computer or microprocessor-based system commonly requires

incoming data to be in parallel format. But frequently, these systems

must communicate with external devices that send or receive serial data.

So, serial-to-parallel conversion is required. As shown in the previous

sections, a serial in - parallel out register can achieve this.

Figure 8.2: Simplified logic diagram of a serial-to-parallel converter

A/D and D/A Converter

Interfacing with the Analog World

 Learning Objectives

On completion of this lesson you will be able to :

♦ learn about various terms of A/D and D/A converters.

 Interfacing with the Analog World

A digital quantity will have a value that is specified as one of two

possibilities such as 0 or 1, LOW or HIGH, true or false, and so on. In

practice, the voltage representation a digital quantity such as a may

actually have a value that is anywhere within specified ranges. For

example, for TTL logic :

0V to 0.8V = logic 0

2V to 5V = logic 1

Any voltage falling in the range 0 to 0.8 V is given the digital value 0,

and any voltage in the range 2 to 5 V is assigned the digital value 1. The

digital circuits respond accordingly to all voltage values within a given

range.

Most physical variables are analog in nature and can take on any value

within a continuous range of values. Examples include temperature,

pressure, light intensity, audio signals, position, rotational speed, and

flow rate. Digital systems perform all of their internal operations using

digital circuitry and digital operations. Any information that has to be

inputted to a digital system must first be put into digital form. Similarly,

the outputs from a digital system are always in digital form.

 Transducer

The physical variable is normally a nonelectrical quantity. A transducer

is a device that converts the physical variable to an electrical variable.

Some common transducers include thermistors, photocells, photodiodes,

flow meters, pressure transducers, and tachometers. The electrical output

of the transducer is an analog current or voltage that is proportional to

the physical variable it is monitoring. For example, the physical variable

could be the temperature of water. Let’s say that the water temperature
0

varies from 80 to 150 F and that a thermistor and its associated circuitry
convert this water temperature to a voltage ranging from 800 to

A digital quantity will have

a value that is specified as

one of two possibilities

such as 0 or 1.

Most physical variables

are analog in nature and

can take on any value

within a continuous range

of values.

A transducer is a device

that converts the physical

variable to an electrical

variable.

1

Transducer

ADC

5

Actuator To
control

physical

variable

DAC

 Digital Systems and Computer Organization

1500mV. Note that the transducer’s output is directly proportional to
0

temperature; such that each 1 F produces a 10mV output. Analog-to-
digital converter (ADC) and digital-to-converter (DAC) are used to

interface a computer to the analog world so that the computer can

monitor and control a physical variable Fig. 7.1.

Analog

input

2 3 4

Analog

output

Physical

variable

Digital

inputs
Digital

outputs

Fig. 7.1 : Interfacing with the analog world using Analog-to-Digital

Converter (ADC) and Digital-to-Analog Converter (DAC).

 Analog-to-Digital Converter (ADC)

The transducer’s electrical analog output serves as the analog input to

the ADC. The ADC converts this analog input to a digital output. This

digital output consists of a number of bits that represent the value of the

analog input. For example, the ADC might convert the transducer’s 800-

to 1500-mV analog values to binary values ranging from 01010000 (80)

to 10010110 (150). Note that the binary output from the ADC is

proportional to the analog input voltages so that each unit of the digital

output represents 10mV.

The digital representation of the analog vales is transmitted from the

ADC to the digital computer, which stores the digital value and

processes it according to a program of instructions that it is executing.

 Digital-to-Analog Converter (DAC)

This digital output from the computer is connected to a DAC, which

converts it to a proportional analog voltage or current. For example, the

computer might produce a digital output ranging from 0000000 to

11111111, which the DAC converts to a voltage ranging from 0 to 10V.

 Actuator

The analog signal from the DAC is often connected to some device or

circuit that serves as an actuator to control the physical variable. For our

water temperature example, the actuator might be an electrically

controlled valve that regulates the flow of hot water into the tank in

accordance with the analog voltage from the DAC. The flow rate would

The transducer’s electrical

analog output serves as

the analog input to the

ADC. The ADC converts

this analog input to a

digital output.

This digital output from

the computer is connected

to a DAC, which converts

it to a proportional analog

voltage or current.

The analog signal from the

DAC is often connected to

some device or circuit that

serves as an actuator to

control the physical

variable.

Digital

System

A/D and D/A Converter

vary in proportion to this analog voltage, with 0 V producing no flow

and 10 V producing the maximum flow rate.

Thus we see that ADCs and DACs function as interfaces between a

completely digital system, like a computer, and the analog world.

 Digital-to-Analog Conversion

Basically, D/A conversion is the process of taking a value represented in

digital code (such as straight binary or BCD) and converting it to a

voltage or current which is proportional to the digital value. Fig. 7.2

shows the symbol for a typical 4-bit D/A converter. Now, we will

examine the various input/output relationships.

Digital

inputs

V
out

Analog

output

Fig. 7.2 : Four bit DAC with voltage output.

The digital inputs D,C,B, and A are usually derived from the output
4

register of a digital system. The 2 = 16 different binary numbers
represented by these 4 bits for each input number, the D/A converter

output voltage is a unique value. In fact, for this case, the analog output

voltage Vout is equal in volts to the binary number.

In general,

Analog output = K × digital input

where K is the proportionality factor and it is constant value for a given

DAC. The analog output can of course be a voltage or current. When it

is a voltage, K will be in voltage units, and when the output is current, K

will be in current units. For the DAC of K=1 V, so that

VOUT = (1 V) × digital input

We can use this to calculate VOUT for any value of digital input. For

example, with a digital input of 11002 = 1210, we obtain

VOUT = 1V × 12 = 12V

D/A conversion is the
process of taking a value

represented
code.

in digital

MSB

D/A converter

(DAC)

LSB

Digital Systems and Computer Organization

Problem 1

A 5-bit DAC has a current output. For a digital input of 101000, an

output current of 10mA is produced. What will IOUT be for a digital

input of 11101?

Solution

The digital input 101002 is equal to decimal 20. Since IOUT = 10 mA for

this case, the proportionality factor as 0.5 mA. Thus, we can find for a

digital input such as 111012 = 2910 as follows :

IOUT = (0.5mA) × 29

= 14.5 mA

Remember, the proportionality factor, K, will vary from one DAC to

another.

Problem 2

What is the largest value of output voltage from an 8-bit DAC that

produces 1.0V for a digital input of 00110010?

Solution

001100102 = 5010

1.0 V = K× 50

Therefore,

K = 20 mV

The largest output will occur for an input of 111111112 = 25510.

VOUT(max) = 20mV×255

= 5.10 V

Analog Output

The output of a DAC is technically not an analog quantity because it can

take on only specific values like the 16 possible voltage levels for Vout.

Thus, in that sense, it is actually digital. However, the number of

different possible output levels can be increased and the difference

between successive values can be decreased by increasing the number of

input bits. This will allow us to produce an output that is more and more

like an analog quantity that varies continuously over a range of values.

 Problem 1 and Solution

 Analog Output

A/D and D/A Converter

Input Weights

For the DAC of it should be noted that each digital input contributes a

different amount to the analog output. This is easily seen if we examine

the cases where only one input is HIGH Table 7.1. The contributions of

each digital input are weighted according to their position in the binary

number.

D C B A VOUT (V)

0 0 0 1 → 1

0 0 1 0 → 2

0 1 0 0 → 4

1 0 0 0 → 8

Table 7.1

Thus, A, which is the LSB, has a weight of 1V, B has a weight of 2V, C

has a weight of 4 V, and D, the MSB, has the largest weight 8V. The

weights are successively doubled for each bit, beginning with the LSB.

Thus, we can consider VOUT to be the weighted sum of the digital inputs.

For instance, to find VOUT for the digital input 0111 we can add the

weights of the C, B, and A bits to obtain 4 V + 2V + 1V=7V.

Problem 3

A 5-bit D/A converter produces VOUT = 0.2 V for a digital input of 0001.

Find the value of Vout for an input of 11111.

Solution

Obviously, 0.2 V is the weight of the LSB. Thus, the weights of the

other bits must be 0.4 V, 0.8 V, 1.6 V, and 3.2 V respectively. For a

digital input of 11111, then, the value of VOUT will be 3.2 V + 1.6 V+

0.8V + 0.4V + 0.2 V = 6.2 V.

 Resolution

Resolution of a D/A converter is defined as the smallest change that can

occur in he analog output as a result of a change in the digital input. We

can see that the resolution is 1V, since VOUT can change by no less than

1 V when the digital input value is changed. The resolution is always

equal to the weight of the LSB and is also referred to as the step size. As

the counter is being continually cycled through its 16 states by the clock

signal, the DAC output is a staircase waveform that goes up 1 V per

step. When the counter is at 1111, the DAC output is at its maximum

value of 15 V; this is its full-scale output. When the counter recycles to

Resolution of a D/A

converter is defined as the

smallest change that can

occur in he analog output

as a result of a change in

the digital input.

 Input Weights

Problem 3 and Solution

Digital Systems and Computer Organization

0000, the DAC output returns to 0V. The resolution or step size of the

jumps in the staircase waveform; in this case, each step is 1 V.

4-bit

counter

 D

C

B

 A

Resolution = step size = 1 V

Fig. 7.3 : Output wave forms of a four bit DAC.

Note that the staircase has 16 levels corresponding to the 16 input states,

but there are only 15 steps or jumps between the 0-V level and full-scale,
N

In general, for an N-bit DAC the number of different levels will be 2 ,
N

and the number of steps will be 2 - 1.

You may have already figured out the resolution (step size) is the same

as the proportionality factor in the DAC input/output relationship :

analog output = K × digital input

A new interpretation of this expression would be that the digital input is

equal to the number of the step, K is the amount of voltage (or current)

per step, and the analog output is the product of the two.

Problem 4

For the DAC of Example 3 determine VOUT for a digital input of 10001.

Solution

The step size is 0.2 V, which is the proportionality factor K. The digital

input is 10001 = 1710. Thus we have :

VOUT = (0.2 V) × 17

= 3.4V

0 V

Resolution

= 1 V

D/A

converter

Clock

Full-scale

(input = 1111) 15 V

10V

V OUT 5V
4V

3V
2V

1V

Input

recycled to

0000
Time

10

N

A/D and D/A Converter

 Percentage Resolution

Although resolution can be expressed as the amount of voltage or current

per step, it is also useful to express it as a percentage of the full-scale

output. To illustrate, in Fig. 7.3 the DAC has a maximum full-scale

output of 15 V (when the digital input is 1111). The step size is 1V,

which gives a percentage resolution.

% resolution =
step size

full scale (F. S.)
× 100%

Problem 5

=
1V

15 V
× 100% = 6.67%

A 10-bit DAC has a step size of 10 mV. Determine the full-scale output

voltage and the percentage resolution.

Solution

With 10 bits, there will be 2 - 1 = 1023 steps of 10mV each. The full-

scale output will therefore be 10mV × 1023 = 10.23 V and

10 mV
% resolution = × 100% ≈ 0.1%

10.23 V

Problem 4 helps to illustrate the fact that the percentage resolution

becomes smaller as the number of input bits is increased. In fact, the

percentage resolution can also be calculated from.

1
% resolution = × 100%

total number of steps

For an N-bit binary input code the total number of steps is 2 -1. Thus,

for the previous example,

% resolution =
1

210 − 1
1

× 100%

= × 100%
1023

≈ 0.1%

 Percentage Resolution

Problem 5 and Solution

Digital Systems and Computer Organization

This means that it is only the number of bits which determines the

percentage resolution. Increase of the number of bits increases the

number of steps to reach full scale.

 Exercise

 Multiple choice questions

a) Each digital input of DAC are weighted according to their

position in the

i) binary number

ii) decimal number

iii) hexa- decimal number

iv) octal number.

b) The ADC converts analog input to a digital

i) input

ii) output

iii) number

iv) all of the above.

 Questions for short answers

a) What is the function of a transducer and actuator?

b) What do you mean by input weights?

c) Define resolution. What is the full scale output?

d) What is the function of an ADC?

e) What function does a DAC perform?

 Analytical question

a) “Five elements are involved when a computer is monitoring and

controlling a physical variable that is assumed to be analog.”

Illustrate the above situation.

A/D and D/A Converter

D/A Converter

 Learning Objectives

On completion of this lesson you will be able to :

♦ design different types of D/A converter circuit and describe their

operation.

♦ Understand the advantages, disadvantages, and limitation of several

types of digital-to-analog converters (DAC).

 D/A Converter

The purpose of a digital-to-analog converter is to convert a binary word

to a proportional current or voltage.

The binary weighted resistors produce binary-weighted current which

are summed up by the op-amp to produce proportional output voltage.

The binary word applied to the switches produces a proportional output

voltage.

Several different binary codes such as straight binary, BCD and offset

binary are commonly used as inputs to D/A converters.

 D/A-Converter Circuitry

There are several methods and circuits for producing the D/A operation. We

shall examine several of the basic schemes, to gain an insight into the ideas

used.
1 K

MSB D
Rt = 1 K

2 K
C

4 K
B

8K

LSB A

- OP

amp

 +

+Vs

-Vs

VOUT

Digital inputs :

0 V or 5 V

Fig. 7.4 : DAC circuitry using op-amp with binary weighted resistors.

Fig. 7.4 shows the basic circuit of 4-bit DAC. The inputs A,B,C, and D are

binary inputs which are assumed to have values of either 0 V or 5 V. The

operational amplifier is employed as a summing amplifier, which produces

The purpose of a digital-

to-analog converter is to

convert a binary word to a

proportional current or

voltage.

 D/A-Converter Circuitry

1 1

Digital Systems and Computer Organization

the weighted sum of these input voltages. the summing amplifier multiplies

each input voltage by the ratio of the feedback resistor RF to the

corresponding input resistor RIN. In this circuit RF RIN 1kΩ and the input

resistors range from 1 to 8 kΩ . The D input has RIN = 1KΩ, so the summing

amplifier passes the voltage at D with no attenuation. The C input has RIN =

2 kΩ, so that it will be attenuated by. Similarly, the B input will be
1

attenuated by ¼ and the A input by /8. The amplifier output can thus be
expressed as

VOUT = - (VD + /2 VC + ¼ VB + /8 VA)

The negative sign is present because the summing amplifier is a polarity-

inverting amplifier, but it will but concern us here.

Clearly, the summing amplifier output is an analog voltage which represents

a weighted sum of the digital inputs. The output is evaluated for any input

condition by setting the appropriate inputs to either 0 V or 5 V. For

example, if the digital input is 1010, then VD = VB = 5V and VC = VA = 0V.

Thus, using equation

VOUT = - (5V +OV + ¼ × 5V + OV)

= - 6.25V

The resolution of this D/A converter is equal to the weighting of the lSB,

1

which is /8 × 5V = 0.625 V. The analog output increases by 0.625 V as the
binary input number advances one step.

Problem 6

Assume VREF = 10 V and R = R = 10 kΩ. Determine the resolution and full-

scale output for this DAC. Assume that RL is much smaller than R.

Solution

I0 = VREE/R = 1 mA. This is the weight of the MSB. The other three currents

will be 0.5, 0.25, and 0.125 mA. The LSB is 0.125 mA, which is also the

resolution.

The full-scale output will occur when the binary inputs are all HIGH so that

each current switch is closed and

IOUT = 1 + 0.5 + 0.25 + 0.125 = 1.875 mA

Note that the output current is proportional to VREF. If VREF is increased or

decreased, the resolution and full-scale output will change proportionally.

 Problem 6

Solution

− V

A/D and D/A Converter

 R/2R Ladder

The DAC circuits we have looked at, has some practical limitations. The

biggest problem is the large difference in resistor values between the LSB

and MSB, especially in high-resolution DACs. One of the most widely used

DAC circuits that uses resistance’s fairly close in value is the R/2R ladder

network. Here the resistance values span a range of only 2 to 1.

Note, how the resistors are arranged, and only two different values are used,

R and 2R. The current IOUT depends on the positions of the four switches,

and the binary inputs B3B2B1B0 control the states of the switches. This

current is allowed to flow through an op-amp current-to-voltage converter to

develop VOUT. It can be shown that the value of VOUT is given by the

expression.

REF

OUT 8
× B .

where B is the value of the binary input, which can range from 000 (0) to

1111 (15).

+ VREF

VOUT

Bo

(LSB)

B1 B2 B3

(MSB)

Fig. 7.5 : R/2R ladder DAC.

 DAC Specifications

 Resolution

As mentioned earlier, the percentage resolution of a DAC is dependent

on the number of bits. A 10-bit DAC has a finer (smaller) resolution than

an 8-bit DAC.

177

2R

2 R

R

2 R 2R
2R

2 R R R

-

lOUT +

V =

 R/2R Ladder

 Resolution

Accuracy

Digital Systems and Computer Organization

 Accuracy

There are several ways of specifying accuracy. The two most common

are called full-scale error and linearity error. which are normally

expressed as a percentage of the converter’s full-scale output (%F.S.)

Full-scale error is the maximum deviation of the DAC’s output from its

expected (ideal) value, expressed as a percentage of full scale. For

example, assume that the DCA has an accuracy of ± 0.01% F.S. Since

this converter has a full-scale output of 9.375 V, this percentage converts

to

± 0.01% × 9.375 V = ± 0.9375 mV

This means that the output of this DAC can, at any time, be off by as

much as 0.9375mV from its expected value.

Linearity error is the maximum deviation in step size from the ideal step

size. For example, the DAC has an expected step size of 0.625 V. If this

converter has a linearity error of ± 0.01F.S,, this would mean that the

actual step size could be off by as much as 0.9375 mV.

Problem 7

A certain 8-bit DAC has a full-scale output of 2mA and a full-scale error

of ± 0.5% F.S. What is the range of possible outputs for an input of

10000000?

Solution

The step size is 2mA/255 = 7.84 µA. Since 10000000 = 12810, the ideal

output should be 128 × 7.84 µA. The error can be as much as

± 0.5% × 2mA = ± 10µA

Thus, the actual output can deviate by this amount from the ideal

1004µA , so the actual output can be anywhere from 994 to 1014 µA.

 Offset Error

Ideally, the output of a DAC will be zero volts when the binary input is

all 0’s. In practice, however, there will be a very small output voltage for

this situation; this is called offset error. This offset error, if not

corrected, will be added to the expected DAC output for all input cases.

Offset error can be negative as well as positive.

 Example 7 and

Solution

 Offset Error

A/D and D/A Converter

Many DACs will have an external offset adjustment that allows you to

zero the offset. This is usually accomplished by applying all 0s to the

DAC input and monitoring the output while an offset adjustment

potentiometer is adjusted until the output is as close to 0 V as required.

 Settling Time

The operating speed of a DAC is usually specified by giving its settling

time, which is the time required for the DAC output to go from zero to

full scale as the binary input is changed from all 0’s to all 1’s. Typical

values for settling time range from 50 ns to 10 µs.

 Monotonicity

A DAC is monotonic if its output increases as the binary input is

incremented from one value to the next. Another way to describe this is

that the staircase output will have no downward steps as the binary input

is incremented from zero to full scale.

 DAC Applications

DACs are used whenever the output of a digital circuit has to provide an

analog voltage or current to drive an analog device. Some of the most

common applications are described in the following paragraphs.

 Control

The digital output from a computer can be converted to an analog

control signal to adjust the speed of a motor or the temperature of a

furnace, to control almost any physical variable.

 Automatic Testing

Computers can be programmed to generate the analog signals (through a

DAC) needed to test analog circuitry. The test circuit’s analog output

response will normally be converted to a digital value by an ADC and

fed into the computer to be stored, displayed, and sometimes analyzed.

 Signal Reconstruction

In many applications, an analog signal is digitized, meaning that

successive points on the signal are converted to their digital equivalent

and stored in memory. This conversion is performed by an analog-to-

digital converter (ADC). A DAC can then be used to convert the stored

digitized data back to analog-one point at a time-thereby reconstructing

the original signal. This combination of digitizing and reconstruction is

 Settling Time

 Monotonicity

DAC Applications

Control

 Automatic Testing

Signal Reconstruction

Digital Systems and Computer Organization

used in digital storage oscilloscopes, audio compact disk systems, and

digital audio and video recording.

 Exercise

 Multiple choice questions

a) Resolution of DAC is equal to the weight of

i) LSB

ii) MSB

iii) full scale output

iv) 1 volt.

b) When the binary input is all 0.s, ideally the output of a DAC will

be?

i) Zero volt

ii) Full scale output voltage

iii) 1 volt

iv) One step voltage.

 Questions for short answers

a) Define full scale error and offset error.

b) What is the advantage of R/2R ladder DAC over the DAC that

uses binary weighted resistors?

c) An 8-bit DAC has an output of 3.92 mA for an input of 01100010.

What are the DAC’s resolution and full-scale output?

d) What is the percentage resolution of an 8-bit DAC?

e) How many different output voltages can a 12-bit DAC produce?

f) Define full-scale error.

g) What is settling time?

h) Describe offset error and its effect on a DAC output.

 Analytical questions

a) Describe the operation of a DAC.

b) What is the advantage of R/2R ladder DACs over those that use

binary weighted resistors?

c) Discuss some of the DAC applications.

Register

D/A

converter

A/D and D/A Converter

A/D Converter

 Learning Objectives

On completion of this lesson you will be able to :

♦ understand the operation of various types of analog-to-digital

converter circuitry such as the single ramp A/D, the digital ramp

A/D circuit.

♦ compare the advantages and disadvantages of different analog-to-

digital converter circuits

 Analog-to-Digital Conversion

An analog-to-digital converter takes an analog input voltage and after a

certain amount of time produces a digital output code which represents

the analog input. The A/D conversion process is generally more complex

and time-consuming than the D/A process. The techniques that are used

provide and insight into what factors determine an ADCs performance.

Several important types of ADC utilize a DAC as part of their circuitry.

Fig. 7.6 is a general block diagram for this class of ADC. The timing for

the operation is provided by the input clock signal. The control unit

contains the logic circuitry for generating the proper sequence of

operations. The START COMMAND, initiates the conversion process,

The op-amp compactor has two analog inputs and a digital output that

switches states, depending on which analog input is greater.

The basic operation of ADCs of this type consists of the following steps:

1. The START COMMAND pulse initiates the operation.

2. At a rate determined by the clock, the control unit continually

modifies the binary number that is stored in the register.

3. The binary number in the register is converted to an analog voltage,

VAX, by the DAC.

V
A +

1
0

Op amp
-

Comparator

Start command

Clock

EOC

(end of conversion)

.

.
VAX .

.

Digital result

Fig. 7.6 : Basic diagram of ADC.

Countrol

unit

An analog-to-digital

converter takes an analog
input voltage and after a

certain amount of time

produces a digital output

code which represents the

analog input.

The basic operation of

ADC.

Digital Systems and Computer Organization

4. The comparator compares VAX with the analog input VA. As long as

VAX < VA1 the comparator output stays HIGH. When VAX exceeds VA

by at least an amount = VT (threshold voltage), the comparator

output goes LOW and stops the process of modifying the register

number. At this point, VAX is a close approximation to VA. The digital

number in the register, which is the digital equivalent of VAX, is also

the approximate digital equivalent of VA1 within the resolution and

accuracy of the system.

5. The control logic activates the end-of-conversion signal, EOC, when

the conversion is complete.

 Digital-Ramp ADC

One of the simplest versions of the general ADC of Fig. 7.7 uses a

binary counter as the register and allows the clock to increment the

counter one step at a time until VAX ≥ VA. It is called a digital-ramp

ADC because the wave form at VAX is a step-by-step ramp (actually a

staircase) like the one shown in Fig. 7.7. It is also referred to as a

counter-type ADC. Fig. 7.7 is the diagram for a digital-ramp ADC. It

contains a counter, a DAC, an analog comparator, and a control AND

gate. The comparator output serves as the active-LOW end-of-

conversion signal, EOC . If we assume that VA, the analog voltage to be

converted, is positive, the operation proceeds as follows :

1. A START pulse is applied to reset the counter to zero. The HIGH at

START also inhibits clock pulse form passing through the AND gate

into the counter.

2. With all 0’s at its input, the DAC’s output will be VAX = 0V.

3. Since VA > VAX, the comparator output, EOC , will be HIGH.

4. When START returns LOW, the AND gate is enabled and clock

pulses get through to the counter.

5. As the counter advances, the DAC output, VAX, increases one step at

a time as shown in Fig. 7.7.

6. This continues unit VAX reaches a step that exceeds VA by an amount

equal to or greater than VT (typically 10 to 100 µV). At this point,

EOC will go LOW and inhibit the flow of pulses into the counter

and the counter will stop counting.

7. The conversion process is now complete as signaled by the HIGH-to-

LOW transition at EOC , and the contents of the counter are the

digital representation of VA.

8. The counter will hold the digital value until the next START pulse

initiates a new conversion.

Operation procedure of a

digital-ramp ADC.

A/D and D/A Converter

VA +

OP amp

-

EOC

Clock

Comparator

START

VAX

RESET

. CLOCK

. Counter

.

.

.

VA

VAX

EOC

Conversion

complete.

counter stops

counting

Digital

result

(a)

Start

tc

(b)

Time

Fig. 7.7 : Digital-ramp ADC.

Problem 8

Assume the following values for the ADC clock frequency = 1 MHz; VT

= 0.1 mV; DAC has F.S. output = 10.23 V and a 10-bit input. Determine

the following values.

a. The digital equivalent obtained for VA = 3.728 V.

b. The conversion time.

c. The resolution of this converter.

Solution

a. The DAC has a 10-bit input and a 10.23-V F.S. output. Thus, the
10

number of total possible steps is 2 - 1 = 1023, and so the step size is
10.23V

1023
= 10mV

This means that VAX increases in steps of 10 mV as the counter counts

up from zero. Since VA = 3.728 V and VT = 0.1 mV, VAX has to reach

3.7281 V or more before the comparator switches LOW. This will

require.

3.7281V

10mV

= 372.81 = 373 steps

D/A

converter

 Problem 8 and Solution

At the end of the conversion, then, the counter will bold the binary

equivalent of 373, which is 0101110101. This is the desired digital

equivalent of VA = 3.728 V, as produced by this ADC.

Digital Systems and Computer Organization

b. Three hundred seventy-three steps were required to complete the

conversion. Thus, 373 clock pulses occurred at the rate of one per

microsecond. This gives a total conversion time of 373 µs.

c. The resolution of this converter is equal to step size of the DAC,

which is 10mV. In percent it is 1/1023 × 100% ≈ 0.1%.

Problem 9

For the same ADC of problem 8 determine the approximate range of

analog input voltages that will produce the same digital result of

01011101012 = 37310.

Solution

Table 7.2 shows the ideal DAC output voltage, VAX, for several of the
rd

steps on and around the 373 . If VA is slightly smaller than 3.72 V (by
an amount < VT),

Step VAX (V)

371 3.71

372 3.72

373 3.73

374 3.74
375 3.75

Table 7.2

Then EOC won’t go LOW when VAX reaches the 3.72-V step, but will

go LOW on the 3.73-V step. If VA is slightly smaller than 3.73 V (by an

amount < VT), then EOC won’t go LOW until VAX reaches the 3.74-V

step. Thus, as long as VA is between approximately 3.72 V and 3.73-V,

EOC will go LOW when VAX reaches the 3.73-V step. The exact range

of VA values is

3.72 V - VT to 3.73 V - VT

but since VT is so small, we can simply say that the range is

approximately 3.72 V to 3.73 V - a range equal to 10 mV, the DAC’s

resolution.

 A/D Resolution and Accuracy

Resolution of the ADC is equal to the resolution of the DAC that it

contains. The DAC output voltage VAX is a staircase waveform that goes

up in discrete steps until it exceeds VA. Thus, VAX is an approximation to e
the value of VA, and the best we can expect is that VAX is within 10 mV

t
of VA if the resolution (step size) is 10 mV. We can think of the
resolution as being a built-in error that is often referred to as

 Problem 9 and Solution

 Resolution of the ADC is

qual to the resolution of

he DAC that it contains.

8

N

A/D and D/A Converter

quantization error. This quantization error, can be reduced by increasing

the number of bits in the counter and DAC.

Problem 10

Acertain 8-bit ADC hs a full-scale input of 2.55 V (i.e., VA = 2.55 V

produces a digital output of 11111111). It has a specified error of 0.1%

F.S. Determine the maximum amount by which the VAX output can differ

from the analog input.

Solution

The step size is 2.55 V/ (2 - 1), which is exactly 10 mV. This means that

even if the DAC has no inaccuracies, the VAX output could be off by as

much as 10 mV because VAX. can change only in 10-mV steps; this is the

quantization error. The specified error of 0.1% F.S. is 0.1% × 2.55 V =

2.55 mV. This means that the VAX value can be off by as much as 2.55

mV because of component inaccuracies. Thus, the total possible error

could be as much as 10 mV + 2.55 mV = 12.55 mV.

 Conversion Time, TC

The conversion time is the time interval between the end of the START

pulse and the activation of the EOC output. The counter starts

counting from zero and counts up until VAX exceeds VA, at which point

EOC goes LOW to end the conversion process. It should be clear that

the value of conversion time, to, depends on VA. A larger value will

require more steps before the staircase voltage exceeds VA.

The maximum conversion time will occur when VA is just below full

scale so that VAX has to go to the last step to activate EOC . For an N-bit

converter this will be

tc (max) = 2 - 1 clock cycles

Sometimes, average conversion time is specified; it is half of the

maximum conversion time.

tc(avg) =
tc(max)

≈ 2 N −1 clock cyles
2

The major disadvantage of the digital-ramp method is that conversion

time essentially doubles for each bit that is added to the counter, so that

resolution can be improved only at the cost of a longer tc. Applications,

 Problem 10 and Solution

 Conversion Time, TC

Digital Systems and Computer Organization

however, the relative simplicity of the digital-ramp converter is an

advantage over the more complex, higher-speed ADCs.

 Applications

Almost any measurable quantity present as a voltage can be digitized by

an A/D converter and displayed. A/D converters are the heart of digital

voltmeters and digital MultiMate’s. Analog voice signals are converted

to digital form for transmission over long distances. At their destination

they are reconverted to analog. In digital audio record- the analog audio

signal produced by a microphone is digitized (using an ADC), then

stored on some medium such as magnetic tope, magnetic disk or optical

disk. Later the stored data are played back by sending them to a DAC to

reconstruct the analog signal, which is fed to the amplifier and speaker

system to produce the recorded sound.

 Exercise

 Multiple choice question

a) The number of total steps of a 9-bit ADC is,

i) 255

ii) 256

iii) 511

iv) 512.

 Questions for short answers

a) What do you know about quantization error?

b) Define conversion time.

c) What is the major disadvantage of the digital ramp type ADC?

d) What is the function of the comparator in the ADC?

e) What is the function of the comparator in the ADC?

f) Where is the approximate digital equivalent of VA when the

conversion is complete?

g) What is the function of the EOC signal?

 Analytical question

a) Draw digital ramp ADC and write down its operation.

 Applications

Semiconductor Memories: RAMs and ROMs

Lesson Objectives:
In this lesson you will be introduced to:

 Different memory devices like, RAM, ROM, PROM, EPROM, EEPROM, etc.

 Different terms like: read, write, access time, nibble, byte, bus, word, word length,

address, volatile, non-volatile etc.

 How to implement combinational and sequential circuits using ROM.

Introduction:
The smallest unit of information a digital system can store is a bit, which can be stored in

a flip-flop or a 1-bit register.

To store m bits of data, an m-bit register with parallel load capability may be used. Data

available on the m-bit input lines (I0 to Im-1) may be stored/written into this register under

control of the clock by asserting the “Load” control input. The stored m bits of data may

be read from the register outputs (O0 to Om-1).

The m bits of data stored in a register make up a word. It is simply a number of bits

operated upon or considered by the hardware as a group. The number of bits in the word,

m, is called word length.

The m inputs of the register are provided through an m-bit input data bus and m outputs

by an m-bit output data bus.

A bus is a number of signal lines, grouped together because of similarity of function,

which connect two or more systems or subsystems.

A unit of 8-bits of information is referred to as a byte, while 4-bits of information is

referred to as a nibble.

A memory device can be looked at as consisting of a number of equally sized registers

sharing a common set of inputs, and a common set of outputs, as shown in the Figure.

Storing data in a memory register is referred to as a memory write operation and looking

up the contents of a memory register is referred to as a memory read operation.

In case of a write operation, the input data need to be written into one particular register

in the memory device.

Since the input data lines are common to all registers of the memory device, only the

selected register should have its load control signal asserted while the other registers

should not.

If the number of registers is 2n, n lines will be required to select the register to be written

into. The n-lines are used as an input to a decoder where the decoder’s 2n outputs may be

used as the load control inputs to the 2n registers.

The load control signal of a particular register is asserted by a unique combination of the

n-select lines. This unique combination is considered as the address for that particular

register.

Thus, a memory device can be thought of as a collection of addressable registers.

A read or a write operation into the memory device has to specify the address of the

particular register to be read or written into.

The capacity of the memory is specified in terms of the number of bits or the number of

words available in this memory device.

For a memory device with n-bit address lines and word (register) size of m-bits, the

memory has 2n words (storage locations/registers) each having m bits for a total capacity

of 2n x m bits.

For example, if n = 10 and m = 8, the memory is a “1024 x 8” bit memory. Alternatively,

it is said that the memory has 1K bytes.

A block diagram of the memory device is shown in the figure. The address inputs are

decoded by address decoder to select one, and only one, of the memory words

(registers), either for reading or writing.

The RD / WR line is a control signal that determines the type of operation to be
performed; a read operation or a write operation.

RD / WR  1 indicates a read operation, while RD / WR  0 indicates a write operation.

To read the memory contents stored in a particular word, the address of this word is

applied, and logic 1 is applied to the

memory.

RD / WR line that enables the output buffers of the

To write at a location, the address of the location to be written is provided at the address

inputs, data is provided at the data inputs, and logic 0 is applied to the RD / WR line.

There is a time delay between the application of an address and the appearance of

contents at the output, this is called the memory access time. This depends both on the

technology and on the structure used to implement the memory.

Random Access Memory (RAM):
For the shown above memory structure, the access time is independent of the sequence in

which addresses are applied.

Such a memory is called random access memory (RAM). Thus, the contents of any one

location can be accessed in essentially the same time as can the contents of any other

location chosen at random.

RAMs are volatile memories that will only retain the stored data as long as power is ON

but will lose this data when power is turned OFF.

RAMs are classified into two main categories: Static RAM (SRAM) and Dynamic RAM

(DRAM). These will be studied in greater details in future courses.

Read Only Memory (ROM):
Read Only Memory (ROM) is memory whose stored data can only be read but cannot be

re-written (altered).

It is a device in which “permanent” binary information has been stored.

ROMs are nonvolatile where stored data are not lost even when power is turned OFF.

The Figure shows a block diagram of a ROM.

Like RAMS, a ROM has n address inputs and m outputs. This corresponds to 2n memory

words each of m storage bits for a total capacity of 2n x m bits.

Unlike RAMs, ROMs do not have data input lines, because they do not have a write

operation.

ROMs are common to use in storing system-level programs that should be available at all

times.

The most common example is the PC system BIOS (Basic Input Output System), which

is stored in a ROM called the system BIOS ROM.

Several classes of ROMs are in common use. These may be categorized according to

their fabrication technologies that influence the way data are introduced into the ROM.

The process of storing the desired data into the ROM is referred to as ROM

programming.

Types of ROMs:
Following are the different types of ROMs.
1. Programming is done by the manufacturer during the last fabrication steps according

to the truth table provided by the customer. This type is known as mask programmable

ROMs or simply ROM. Data stored this way can never be altered.

2. ROM is provided with fuses to allow users to introduce the desired data by electrically

blowing some of these fuses. This type is referred to as a programmable ROM, or

PROM. Fuse blowing is irreversible and, once programmed the ROM stored pattern

cannot be altered.

3. The ROM uses erasable floating-gate memory cells that allow erasure of the stored

data by Ultra-Violet light. In this type, programming is performed electrically by the

user using special hardware programmers. Data, thus stored, can later be erased

globally (all memory bits = 1) by exposing the memory array to UV-light. This ROM

type is referred to as UV-erasable, programmable ROM, or simply EPROM. The

EPROM IC package is provided with a quartz window to allow UV-light penetration

to the memory array.

Quartz

Window

Closer View of

Quartz Window

4. When special electrically erasable memory cells are used, the ROM can be electrically

erased at the byte level. Thus individual bytes may be addressed and programmed or

erased as desired. This type is referred to as electrically erasable, programmable

ROM, or EEPROM or E2PROM. The E2PROM technology is an expensive low-

capacity technology and is thus not used for high density or low-cost applications.

5. The most recent ROM technology is the flash technology that combines the low-cost

and high-density advantages of the UV-EPROM technology and the flexibility of

electrical erase of E2PROM technology. This technology is electrically erasable but

the erasure is performed either globally (the full array) or partially on complete sub-

arrays (sectors).

Combinational Circuit Implementation Using ROM:

ROM devices can be used to implement complex combinational circuits directly from

truth tables without need for minimization.

For an n-input, m-output combinational circuit, a 2n x m ROM is needed (2n words each

of m storage bits). The designer needs only to specify a ROM table that gives the

information stored in each of the 2n words.

When a combinational circuit is implemented using a ROM, the function may either be

expressed in the sum of minterms form, or using a truth table.

As an example, the ROM shown in the figure may be considered as a combinational

circuit with four outputs, each a function of the five input variables.

Outputs Z0 – Z3 can be expressed as sum of minterms as follows:

Z0 (A4, A3, A2, A1, A0) = ∑m (2, 3, 18, 21, 31)

Z1 (A4, A3, A2, A1, A0) = ∑m (0, 1, 17, 25, 31)

Z2 (A4, A3, A2, A1, A0) = ∑m (1, 6, 11, 29, 30)

Z3 (A4, A3, A2, A1, A0) = ∑m (7, 8, 16, 28, 29)

Example 1:
Consider a combinational circuit which is specified by the following two functions:

F1 (X, Y) = ∑m (1, 2, 3)

F2 (X, Y) = ∑m (0, 2)

The truth table for this circuit is as shown.

In this example, the ROM that implements the two combinational functions must have

two address inputs and two outputs. Thus, its size must be 4 x 2 (since 2n x m is the size

of ROM).

The ROM table for this example is as shown.

Example 2:
Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and

generates an output binary number that is equal to the square of the input number.

The first step is to derive the truth table for the combinational circuit as shown. Three

inputs and six outputs are needed to accommodate all possible numbers.

By observation, we note that output B0 is always equal to input A0, and output B1 is

always 0. Thus, there is no need to store B0 and B1 in the ROM. We actually need to only

store values of the four outputs (B5 through B2) in the ROM.

The table shown specifies all the information that needs to be stored in the ROM, and

figure shows the required connections of the combinational circuit. The output B1 is

connected to logic 0 and output B0 is connected to A0 always to get B1 = 0 and B0 = A0.

The minimum size ROM needed must have three inputs and four outputs, for a total of 8

x 4 = 32 bits.

Synchronous Sequential Circuit Implementation Using ROM:
The block diagram of a sequential circuit is shown in the figure.

Since ROM can implement combinational logic, so this part can be replaced by a ROM

and Flip-Flops can be replaced by a register as shown in the figure.

Example 3:
Design a sequential circuit whose state transition table is given, using a ROM and a

register.

The next-state and output information are obtained from the table as:

Q1
+ = ∑m (1, 2, 5, 6)

Q2
+ = ∑m (4, 6)

Y (Q2, Q1, X) = ∑m (3, 7)

The ROM can be used to implement the combinational circuit and register will provide

the flip-flops.

The number of address inputs to the ROM is equal to the number of flip-flops plus the

number of external inputs.

The number of outputs of the ROM is equal to the number of flip-flops plus the number

of external outputs.

In this example, 3 inputs and 3 outputs of the ROM are required; so its size must be 8 x 3.

The ROM table is identical to the state transition table with Present State and Inputs

specifying the address of ROM and Next State and Outputs specifying the ROM outputs

(stored information). It is shown below:

The next state values must be connected from the ROM outputs to the register inputs as

shown in the figure below.

	NUMBER SYSTEMS
	Binary Number System
	Octal Number System
	Hexadecimal Number System:
	Binary Arithmetic Opeartion
	Alphanumeric code
	CHECK YOUR PROGRESS 1
	Basic Laws of Boolean Algebra
	De Morgan’s Theorems:
	CHECK YOUR PROGRESS 2
	SUMMARY
	Multiplexer and Demultiplexer
	Mutliplexer:
	Understanding 4-to-1 Multiplexer:
	Applications of Multiplexer:

	Demultiplexer:
	Understanding 1- to-4 Demultiplexer:
	Applications of Demultiplexer:

	1. S-R Flip Flop
	 S-R Flip Flop using NAND Gate
	 Clocked S-R Flip Flop

	2. D Flip Flop
	3. J-K Flip Flop
	4. T Flip Flop
	Serial In - Serial Out Shift Registers
	Figure 2.1
	2.2 5-bit serial in/serial out shift registers

	Serial In - Parallel Out Shift Registers
	Parallel In - Serial Out Shift Registers
	Parallel In - Parallel Out Shift Registers
	Bidirectional Shift Registers
	Shift Register / Counters
	Johnson Counters

	Applications
	To convert serial data to parallel data
	D/A Converter
	A/D Converter
	Lesson Objectives:
	Introduction:
	Random Access Memory (RAM):
	Read Only Memory (ROM):
	Types of ROMs:
	Combinational Circuit Implementation Using ROM:
	Synchronous Sequential Circuit Implementation Using ROM:

