
 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 E-Content

 On

 “Dot Net Programming using C#”

 Prepared By: Prof. Himanshu Dehariya

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

.NET Framework Architecture
.NET is tiered, modular, and hierarchal. Each tier of the .NET Framework is a layer of abstraction. .NET
languages are the top tier and the most abstracted level. The common language runtime is the bottom tier, this
is important since the common language runtime works closely with the operating environment to manage
.NET applications. The .NET Framework is partitioned into modules, each with its own distinct responsibility.
Finally, since higher tiers request services only from the lower tiers, .NET is hierarchal.

Definition: A programming infrastructure created by Microsoft for building, deploying, and running
applications and services that use .NET technologies, such as desktop applications, Web application , console
application,Web services etc.

 .NET Framewotk consists of mainly two parts-

Common Language Runtime (CLR): The execution environment for .NET applications.
Framework Class Library (FCL): The base classes for .Net framework.

Common Language Runtime (CLR)
.Net Framework provides runtime environment called Common Language Runtime (CLR). The code which
runs under the CLR is called as Managed Code. Programmers need not to worry on managing the memory if
the programs are running under the CLR as it provides memory management and thread management.
When our program needs memory, CLR allocates the memory for scope and de-allocates the memory if the
scope is completed.Language Compilers (e.g. C#, VB.Net, J#) will convert the Code/Program to Microsoft
Intermediate Language (MSIL) intern this will be converted to Native Code by CLR.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Managed code is managed by the common language runtime. CLR manages security, code verification, type
verification, exception handling, garbage collection, a common runtime, and other important elements of
program execution. When an assembly is executed, mscoree.dll is loaded into the memory of the running
process. mscoree.dll contains the common language runtime, which then manages the executing application

The CLR interfaces between the application & the operating system. When a .Net application is run, CLR is
responsible for loading the code and setting up the environment with the required resources. It also provides
number of other services to .Net applications.

Common Type System (CTS)
It describes set of data types that can be used in different .Net languages in common. (i.e), CTS ensures that
objects written in different .Net languages can interact with each other.
The Common Type System (CTS) is a catalog of .NET types.System.Int32, System.Decimal, System.Boolean, and
so on. Developers are not required to use these types directly. These types are the underlying objects of the
specific data types provided in each managed language. For Example C# has int Data Type and VB.Net has
Integer Data Type. Hence a variable declared as int in C# or Integer in vb.net, finally after compilation, uses
the same structure Int32 from CTS.
 C Sharp Integer Vb.Net Integer
 int a; Dim a as integer

Preferably, you should use the syntax of the language and not the underlying object type, leaving .NET the
flexibility to select the most appropriate type and size for the operating environment. The common type
system supports two general categories of types:

Value types: Value types directly contain their data, and instances of value types are either allocated on the
stack Value types can be built-in (implemented by the runtime), user-defined, or enumerations.

Reference types: Reference types store a reference to the value's memory address, and are allocated on the
heap. Reference types can be self-describing types, pointer types, or interface types.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Common Language Specification (CLS)
It is a sub set of CTS and it specifies a set of rules that needs to be adhered or satisfied by all language
compilers targeting CLR. It helps in cross language inheritance and cross language debugging.
CLS stands for Common Language Specification and it is a subset of CTS. It defines a set of rules and
restrictions that every language must follow which runs under .NET framework. The languages which follow
these set of rules are said to be CLS Compliant. In simple words, CLS enables cross-language integration.

For example, one rule is that you cannot use multiple inheritance within .NET Framework. As you know C++
supports multiple inheritance but; when you will try to use that C++ code within C#, it is not possible because
C# doesn’t support multiple inheritance.
One another rule is that you cannot have members with same name with case difference only i.e. you cannot
have add() and Add() methods. This easily works in C# because it is case-sensitive but when you will try to use
that C# code in VB.NET, it is not possible because VB.NET is not case-sensitive.

Cross Language integration
You can use a utility of a language in another language (It uses Class Language Integration). It includes no
restriction on the type of applications that are possible. The .NET Framework allows the creation of Windows
applications, Web applications, Web services, and lot more. The .NET Framework has been designed so that it
can be used from any language, including C#, C++, Visual Basic, JScript, and even older languages such as
COBOL.

Framework Class Liabrary (FCL)
This is also called as Base Class Library (BCL) and it is common for all types of applications i.e. the way you
access the Library Classes and Methods in VB.NET will be the same in C#, and it is common for all other
languages in .NET. The following are different types of applications that can make use of .net class library.

1. Windows Application- It is desktop application.
2. Console Application- an application that takes input and displays output at a command line console.
3. Web Application- All websites are example of web application. They use a web server.
4. Web Services- It doesn't use web-based server. Internet payment systems are example of web services.

In short, developers just need to import the BCL in their language code and use its predefined methods and
properties to implement common and complex functions like reading and writing to file, graphic rendering,
database interaction, and XML document manipulation.

FCL includes some 600 managed classes. Aflat hierarchy consisting of hundreds of classes would be difficult to
navigate. Microsoft partitioned the managed classes of FCL into separate namespaces based on functionality.
For example, classes pertaining to local input/output can be found in the namespace System.IO. To further
refine the hierarchy, FCL namespaces are often nested; the tiers of namespaces are delimited with dots.
System.Runtime.InteropServices, System.Security.Permissions, and System.Windows.Forms are
examples of nested namespaces. The root namespace is System, which provides classes for console
input/output, management of application domains, delegates, garbage collection, and more.

 DLL Hell

It refers to the set of problems caused when multiple applications attempt to share a common component like
a dynamic link library (DLL) or a Component Object Model (COM) class. The reason for this issue was that the
version information about the different components of an application was not recorded by the system.
(Windows Registry cannot support the multiple versions of same COM component this is called the dll hell
problem.)

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

.NET supports two kind of code
 1) Managed Code 2) Unmanaged Code
Managed Code
The resource, which is with in your application domain is, managed code. The resources that are within
domain are faster. The code, which is developed in .NET framework, is known as managed code. This code is
directly executed by CLR with help of managed code execution. Any language that is written in .NET
Framework is managed code. Managed code uses CLR which in turns looks after your applications by
managing memory, handling security, allowing cross - language debugging, and so on.

Unmanaged Code
The code, which is developed outside .NET, Framework is known as unmanaged code. Applications that do not
run under the control of the CLR are said to be unmanaged, and certain languages such as C++ can be used to
write such applications, which, for example, access low - level functions of the operating system. Background
compatibility with code of VB, ASP and COM are examples of unmanaged code.
 Unmanaged code can be unmanaged source code and unmanaged compile code. Unmanaged code is
executed with help of wrapper classes. Wrapper classes are of two types: CCW (COM callable wrapper) and
RCW (Runtime Callable Wrapper). Wrapper is used to cover difference with the help of CCW and RCW.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

COM callable wrapper unmanaged code Runtime Callable Wrapper unmanaged code

--
Native Code
The code to be executed must be converted into a language that the target operating system understands,
known as native code. This conversion is called compiling code, an act that is performed by a compiler. Under
the .NET Framework, however, this is a two - stage process. With help of MSIL and JIT.

MSIL (Microsoft Intermediate Language)
It is language independent code. When you compile code that uses the .NET Framework library, you don't
immediately create operating system - specific native code. Instead, you compile your code into Microsoft
Intermediate Language (MSIL) code. The MSIL code is not specific to any operating system or to any language.

JIT (Just-in-Time)
Just - in - Time (JIT) compiler, this compiles MSIL into native code that is specific to the OS and machine
architecture being targeted. Only at this point can the OS execute the application. The just - in - time part of the
name reflects the fact that MSIL code is only compiled as, and when, it is needed.
 In the past, it was often necessary to compile your code into several applications, each of which
targeted a specific operating system and CPU architecture. Often, this was a form of optimization. This is now
unnecessary, because a JIT compiler uses MSIL code, which is independent of the machine, operating system,
and CPU. Several JIT compilers exist, each targeting a different architecture, and the appropriate one will be
used to create the native code required. JIT are of three types:

1. Pre JIT- It converts all the code in executable code and it is slow
2. Econo JIT- It will convert the called executable code only, but when a code is called again, evey time.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

3. Normal JIT- It will only convert the called code and will store in cache so that it will not require
converting code again. Normal JIT is fast.

Assemblies

When you compile an application, the MSIL code created is stored in an assembly. Assemblies include both
executable application files that you can run directly from Windows without the need for any other programs
(these have an .exe file extension), and libraries (which have a .dll extension) for use by other applications. In
addition to containing MSIL, assemblies also include meta information (information about the information
contained in the assembly, also known as metadata) and optional resources (additional data used by the MSIL,
such as sound files and pictures).

The meta information enables assemblies to be fully self - descriptive. You need no other information to use an
assembly, meaning you avoid situations such as failing to add required data to the system registry and so on,
which was often a problem when developing with other platforms. This means that deploying applications is
often as simple as copying the files into a directory on a remote computer. Because no additional information
is required on the target systems, you can just run an executable file from this directory and (assuming the
.NET CLR is installed) you're good to go.

Of course, you won't necessarily want to include everything required to run an application in one place. You
might write some code that performs tasks required by multiple applications. In situations like that, it is often
useful to place the reusable code in a place accessible to all applications. In the .NET Framework, this is the
Global Assembly Cache (GAC). Placing code in the GAC is simple - you just place the assembly containing the
code in the directory containing this cache. We can create two types of Assembly:
 Private Assembly: A private Assembly is used only by a single application, and usually it is stored in

that application's install directory.
 Shared Assembly: A shared Assembly is one that can be referenced by more than one application. If

multiple applications need to access an Assembly, we should add the Assembly to the Global Assembly
Cache (GAC).

--

Garbage Collection (GC)

One of the most important features of managed code is the concept of garbage collection. This is the .NET
method of making sure that the memory used by an application is freed up completely when the application is
no longer in use. Prior to .NET this was mostly the responsibility of programmers, and a few simple errors in
code could result in large blocks of memory mysteriously disappearing as a result of being allocated to the
wrong place in memory. That usually meant a progressive slowdown of your computer followed by a system
crash.
.NET garbage collection works by inspecting the memory of your computer every so often and removing
anything from it that is no longer needed. There is no set time frame for this; it might happen thousands of
times a second, once every few seconds, or whenever, but you can rest assured that it will happen.
--
Namespace

Namespaces are C# program elements designed to help you organize your programs. They also provide
assistance in avoiding name clashes between two sets of code. A namespace is designed for providing a way to
keep one set of names separate from another. The class names declared in one namespace does not conflict
with the same class names declared in another. Namespaces are the way to organize .NET Framework Class
Library into a logical grouping according to their functionality, usability as well as category they should belong
to, or we can say Namespaces are logical grouping of types for the purpose of identification.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

The .NET Framework Class Library (FCL) is a large collection of thousands of Classes. These Classes are
organized in a hierarchical tree. The System Namespaces is the root for types in the .NET Framework. We can
uniquely identify any Class in the .NET Framework Class Library (FCL) by using the full Namespaces of the
class .In .Net languages every program is created with a default Namespaces. Programmers can also create
their own Namespaces in .Net languages.
Advantages:

 We can establish security, version, reference, and deployment boundaries by using namespaces
 Because of grouping of namespaces we can create hierarchy which is easy to identify classes by fully

qualified names.
 Namespace is logical division of class, structure and interface
 Namespaces are a way of grouping type names and reducing the chance of name collisions.
 The namespace with all the built-in functionality comes under System namespace. All other namespaces

comes under this System namespace.
Difference between Namespace and Assembly

A namespace is a logical grouping of types. An assembly can contain types in multiple namespaces and a single
namespace can be spread across assemblies.

Event Driven Programming
In computer programming, event-driven programming is a programming paradigm in which the flow of the
program is determined by events such as user actions (mouse clicks, key presses), sensor outputs,
or messages from other programs/threads. Event-driven programming is the dominant paradigm used
in graphical user interfaces and other applications (e.g. JavaScript web applications) that are centered on
performing certain actions in response to user input. The common events are Click, DblClick, Load,
MouseMove, MouseDown, MouseUp, KeyPress, KeyUp, KeyDown, GotFocus, LostFocus, etc.
 When you fire an event, the code in the event procedure is executed, and then visual basic
performs its operations as per the instructions written in the event procedure code. For example, in the first
sample program, when you click the 'Print' button, the click event is fired, and then the code in the click event
procedure gets executed. The code tells Visual Basic to print a text on the form. So as a result, you see a text
printed on the form.

Methods
A Method is a procedure built into the class. They are a series of statements that are executed when called.
Methods allow us to handle code in a simple and organized fashion. There are two types of methods in VB
.NET: those that return a value (Functions) and those that do not return a value (Sub Procedures).

Sub Procedures
Sub procedures are methods which do not return a value. Each time when the Sub procedure is called the
statements within it are executed until the matching End Sub is encountered. Sub Main(), the starting point of
the program itself is a sub procedure. When the application starts execution, control is transferred to Main Sub
procedure automatically which is called by default.

Module Module1

Sub Display()
 System.Console.WriteLine("Using Sub Procedures")
End Sub

Sub Main()

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 Display()
End Sub

End Module

Functions
Function is a method which returns a value. Functions are used to evaluate data, make calculations or to
transform data. Declaring a Function is similar to declaring a Sub procedure. Functions are declared with the
Function keyword. The following code is an example on Functions:

Module Module1

Public Function Add() As Integer
 Dim i, j As Integer
 i = 10
 j = 20
 Return (i + j)
End Function

Sub Main()
 Write("Sum is" & " " & Add())
End Sub

End Module
Calling Methods
A method is not executed until it is called. A method is called by referencing it's name along with any required
parameters. For example, the above code called the Add method in Sub main like this:
 Write("Sum is" & " " & Add()).

Method Variables
Variables declared within methods are called method variables. They have method scope which means that
once the method is executed they are destroyed and their memory is reclaimed. For example, from the above
code (Functions) the Add method declared two integer variables i, j. Those two variables are accessible only
within the method and not from outside the method.

#Parameters
A parameter is an argument that is passed to the method by the method that calls it. Parameters are enclosed
in parentheses after the method name in the method declaration. You must specify types for these parameters.
The general form of a method with parameters looks like this:

Public Function Add (ByVal x1 as Integer, ByVal y1 as Integer)

 <Function Body>

End Function

Events

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Events are basically a user action like key press, clicks, mouse movements, etc., or some occurrence like
system generated notifications. Applications need to respond to events when they occur.

Clicking on a button, or entering some text in a text box, or clicking on a menu item, all are examples of events.
An event is an action that calls a function or may cause another event.

Event handlers are functions that tell how to respond to an event. VB.Net is an event-driven language. There
are mainly two types of events:

 Mouse events
 Keyboard events

Handling Mouse Events
Mouse events occur with mouse movements in forms and controls. Following are the various mouse events
related with a Control class:

 MouseDown - it occurs when a mouse button is pressed
 MouseEnter - it occurs when the mouse pointer enters the control
 MouseHover - it occurs when the mouse pointer hovers over the control
 MouseLeave - it occurs when the mouse pointer leaves the control
 MouseMove - it occurs when the mouse pointer moves over the control
 MouseUp - it occurs when the mouse pointer is over the control and the mouse button is released
 MouseWheel - it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of typeMouseEventArgs. The MouseEventArgs
object is used for handling mouse events. It has the following properties:

 Buttons - indicates the mouse button pressed
 Clicks - indicates the number of clicks
 Delta - indicates the number of detents the mouse wheel rotated
 X - indicates the x-coordinate of mouse click
 Y - indicates the y-coordinate of mouse click

Handling Keyboard Events
Following are the various keyboard events related with a Control class:

 KeyDown - occurs when a key is pressed down and the control has focus
 KeyPress - occurs when a key is pressed and the control has focus
 KeyUp - occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of typeKeyEventArgs. This object has
the following properties:

 Alt - it indicates whether the ALT key is pressed/p>
 Control - it indicates whether the CTRL key is pressed
 Handled - it indicates whether the event is handled
 KeyCode - stores the keyboard code for the event
 KeyData - stores the keyboard data for the event
 KeyValue - stores the keyboard value for the event
 Modifiers - it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed
 Shift - it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of typeKeyEventArgs. This object has
the following properties:

 Handled - indicates if the KeyPress event is handled

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 KeyChar - stores the character corresponding to the key pressed

Dot Net as Better

1. In .NET you have a choice of languages to code with (C#, VB.NET, Java, Boo, Python e.t.c), producing the

same type of compiled code but in Java one is limited to the java language.

2. NET prgrams run at native speed while java is interpreted which makes java slower.Although java has
Just In Time compilation but it stills run slower.

3.
Calling native code in java is not a very clean process. You need to generate some stub files which
makes the whole process cumbersome and dirty. In .NET you just declare that you are calling a native
function from a specified library and just start calling it.

4.
Dot NET languages are richer than Java. They have object oriented feature that are absent in java e.g
properties, delegates, generics.

5. Java GUI programs look alien on the host operating system. Even if you use the OS's theme you still

notice that the java widgets look out of place.
6.

Dot NET in the form of Mono has brought a whole revolution on the linux desktop in form of great
applications like beagle, tomboy, diva, iFolder, banshee e.t.c. This is something that java has failed to do
despite the fact that it's been there long before .NET

7.
Many programs that would have been difficult to develop with java have been developed with .NET
things like compilers (Mono's C# and VB.NET) 3D game engines (unity game engine) e.t.c

8.
The CLI is an open standard maintained by an independent standards organization (E.C.M.A) while java
is still governed by SUN microsystems.Even though java has recently been open-sourced, it's future will
still be highly influenced by SUN.

9.
You can code on the .NET platform using Java but you cannot code on Java platform using any of the
.NET languages.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Declaring Variables

Variables are named storage areas inside computer memory where a program places data during processing. A

program sets aside these storage areas by declaring variables, that is, by assigning them a name and indicating

what types of data will occupy these areas during processing. Within a Visual Basic program, variables are

declared using the Dim statement as shown below.

Dim <variable> as <type>

Where variable is a programmer-supplied name for the storage area and type is one of the data types in VB.

Rules for Naming Variables

Programmer-supplied variable names are also referred to as identifiers, and they must conform to Visual Basic

naming conventions. A variable name must

 Begin with an alphabetic or numeric character, or the underscore (_) character.
 Be composed only of alphabetic, numeric, and underscore characters.
 Not contain embedded blank spaces.
 Not be the same as a Visual Basic keyword, words the comprise the Visual Basic language itself.

Ex: X, My_Variable, MyVariable, My_Data_Variable,

#Data Types

When declaring a variable an indication can be given about what type of data will be stored. There are many

data types permissible under Visual Basic. The following are common types of data involved in computer

processing.

Short: A nondecimal number with a value in the range of -32,768 to +32,767.

Integer: A nondecimal number with a value in the range of -2,147,483,648 to +2,147,483,647.

Long: A nondecimal number with value in range of -9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807.

Single: A floating-point (decimal) positive or negative number with a value in the range of up to 3.402823E38

Double: A floating-point positive or negative number with a value in the range of up to

1.79769313486232E308.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Decimal: A decimal number with a value in the range of up to +79,228,162,514,264,337,593,950,335. without

decimal precision and up to +7.9228162514264337593543950335 with 28 places of decimal precision.

String: Any number of alphabetic, numerical, and special characters.

Date: Dates ranges from January 1, 0001 to December 31, 9999 & times ranges from 0:00:00 to 23:59:59.

Boolean: The value True or False.

Ex: Dim My_Counter as Integer, Dim My_Salary as Decimal, Dim My_Name as String, Dim DOB As Date

Assigning Values to Variables

Variable declarations simply set aside memory storage areas as temporary containers of data, temporary

because they are no longer accessible once the program ends. During processing, of course, these variables are

occupied by data values. In any case, variables take on values by assigning values to them. Variables are

assigned values with the Visual Basic assignment statement whose general format is shown below.

variable = value

The data value on the right of the equal sign is assigned to the variable identified on the left of the equal sign.

Assigning Constants to Variables

A literal data value a particular number, string, date, or Boolean value can be assigned to the variable. A

number is assigned by specifying its value to the right of the equal sign:

Ex: My_Integer = 10, My_FloatingPoint = 12.34567, My_Decimal = 123.45

The Variant Data Type

If variable types are not explicitly declared - using As Integer, As Decimal, As String, etc. then values assigned

to the variable are stored as a Variant data type. Any type of data can be stored in the variable and any type of

operation can be performed on it. It is a general-purpose data type that provides flexibility in storing different

types of data in a single variable. It can be assigned a numeric value that is immediately replaced by a string

value.

Although it does offer some programming flexibility, there are minor inefficiencies associated with converting

different data types for representation in the same storage area. For this reason it is best always to declare

specific data types for specific variables. This practice of using strong typing of variables leads to more efficient

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

programming and reduction in errors from inadvertently storing the wrong kinds of data in the wrong

variables.

Interface

Interfaces allow us to create definitions for component interaction. They also provide another way of

implementing polymorphism. Through interfaces, we specify methods that a component must implement

without actually specifying how the method is implemented. We just specify the methods in an interface and

leave it to the class to implement those methods. Visual Basic .NET does not support multiple inheritance

directly but using interfaces we can achieve multiple inheritance. We use the Interface keyword to create an

interface and implements keyword to implement the interface. Once you create an interface you need to

implement all the methods specified in that interface. The following code demonstrates the use of interface.

Example:

Imports System.Console

Module Module1

Public Interface Test

 Sub disp()

 Function Multiply() As Double

End Interface

Public Class One

 Implements Test

 Public i As Double = 12

 Public j As Double = 12.17

 Sub disp() Implements Test.disp

 WriteLine("sum of i+j is==" & i + j)

 Read()

 End Sub

 Public Function multiply() As Double Implements Test.Multiply

 WriteLine(i * j)

 Read()

 End Function

End Class

Public Class Two

 Implements Test

 Public a As Double = 20

 Public b As Double = 32.17

 Sub disp() Implements Test.disp

 WriteLine("Welcome to Interfaces")

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 Read()

 End Sub

 Public Function multiply() As Double Implements Test.Multiply

 WriteLine(a * b)

 Read()

 End Function

End Class

Sub Main()

 Dim OneObj As New One()

 Dim TwoObj As New Two()

 OneObj.disp()

 OneObj.multiply()

 TwoObj.disp()

 TwoObj.multiply()

End Sub

End Module

Example:

Imports System

Module Module1

Public Interface inter

 Sub GetData(ByVal rno As Integer, ByVal sname As String)

 Sub Show()

End Interface

Class Record

 Dim p, c, m As Integer

 Public Sub Getdata1(ByVal phy As Integer, ByVal chm As Integer, ByVal Mat As Integer)

 p = phy

 c = chm

 m = Mat

 End Sub

 Public Sub show1()

 Console.WriteLine("PHYSICS=>" & p)

 Console.WriteLine("CHEMISTRY=>" & c)

 Console.WriteLine("MATHEMATICS=>" & m)

 End Sub

End Class

Class Print

 Inherits Record

 Implements inter

 Public r As Integer

 Public nm As String

 Public Sub GetData(ByVal rno As Integer, ByVal sname As String) Implements inter.GetData

 r = rno

 nm = sname

 End Sub

 Public Sub Show() Implements inter.Show

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 Console.WriteLine("SUDENT NAME=>" & r)

 Console.WriteLine("STUDENT NAME=>" & nm)

 End Sub

End Class

Sub main()

 Dim p As New Print

 p.GetData(101, "HIMANSHU")

 p.Getdata1(78, 87, 98)

 p.Show()

 p.show1()

 Console.ReadLine()

End Sub

End Module

Message Box

Message Box is one of the built-in dialog boxes that help you to provide a rich user interface in your front-end

applications. MessageBox.Show displays a dialog box. It interrupts the user. It immediately blocks further

interaction. We specify buttons, default buttons, an icon, and some other properties of the dialog.

So if your message box function was this:

MessageBox.Show (“This menu will Undo an Operation", "Undo”)

You would get this message box popping up:

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Each option for your message box is separated by a comma. If you type a comma after the "Undo", and then a

space, you'll get another pop-up menu. On this menu, you can specify which buttons you want on your message

box:

You only need the OK button on your message boxes. Double click this item, then type another comma, and hit

the spacebar. Yet another pop-up menu will appear. On this menu, you can specify the symbol that appears in

the message box:

It's up to you which symbol you choose. Experiment with all of them and see what they look like. In the image

below, we've gone for the Information symbol:

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Input Box

When you need to prompt the user to enter an expected value you use Input Box. It displays a prompt in a

dialog box, waits for the user to enter value and finally returns a string containing the entry.

An input box is a specially designed dialog box that allows the programmer to request a value from the user

and use that value as necessary. An input box displays a title, a message to indicate the requested value, a text

box for the user, and two buttons: OK and Cancel. Here is an example:

When an input box displays, it presents a request to the user who can then provide a value. After using the

input box, the user can change his or her mind and press Esc or click Cancel. If the user provided a value and

want to acknowledge it, he or she can click OK or press Enter. This would transfer the contents of the text box

to the application that displayed the input box.

Dim strUserName as String

strUserName = InputBox("Enter your name:", "InputBox Test", "Type your name here.")

Syntax:

 String variable = InputBox(prompt[, title] [, default] [, xpos] [, ypos])

The arguments to the InputBox function are described below:

Argument Description

prompt Required. String expression displayed as the message in the dialog box. The maximum length

of prompt is approximately 1024 characters, depending on the width of the characters used.

title Optional. String expression displayed in the title bar of the dialog box. If you omit title, the

application name is placed in the title bar.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

default Optional. String expression displayed in the text box as the default response if no other input is

provided. If you omit default, the text box is displayed empty.

xpos and ypos Both optional. Numeric expressions that specify custom positioning of the box on screen (by

default, the box is displayed in the center of the screen, which is usually desired).

If the user clicks OK or presses ENTER, the InputBox function returns whatever is in the text box. If the user
clicks Cancel, the function returns a zero-length string ("").

Array

Arrays are using for store similar data types grouping as a single unit. It is a fixed collection of same data type

that are stored contiguously and that are accessible by an index. We specify their length and we can initialize

arrays with data. We can access Array elements by its numeric index.

Integer Array: Declaring and Initializing an Integer Array

Dim ar (10) As Integer

array (0) = 10

array (1) = 20

array (2) = 30

In the above code we declare an Integer Array of four elements and assign the value to array index. That means we

assign values to array index 0-4.We can retrieve these values from array by using a for loop.

Example

Imports System
Module module1
 Sub Main()

 Dim ar (10) As Integer
 Dim i as Integer
 For i = 1 To 10
 Console.WriteLine ("Value=" & i)

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 Next
 Console.Read ()

 End Sub
End Module

String Array: Declaring and Initializing a String Array

Dim week (6) As String
week (0) = "Sunday"

week (1) = "Monday"

Example

Imports System
Module module1

 Sub Main()
 Dim ar () As String = {"dog", "cat", "fish"}

 For Each value As String In ar
 Console.WriteLine (value)
 Next
 Console.Read()
 End Sub
End Module

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need of the program. You can

declare a dynamic array using the ReDim statement.

ReDim [Preserve] arrayname (subscripts)

Where,

 The Preserve keyword helps to preserve the data in an existing array, when you resize it.

 arrayname is the name of the array to re-dimension.

 subscript specifies the new dimension.

Multi-Dimensional Arrays

VB.Net allows multidimensional arrays. Multidimensional arrays are also called rectangular arrays.

You can declare a 2-dimensional array of strings as:

Dim MyArray (10, 20) As String

Or, a 3-dimensional array of Integer variables:

Dim MDArray (10, 10, 10) As Integer

The following program demonstrates creating and using a 2-dimensional array as matrix

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 Module Module1

 Sub Main()
 Dim MyArray(3, 3) As Integer
 Dim i, j As Integer
 Console.WriteLine("Enter Value")
 For i = 0 To 2
 For j = 0 To 2
 MyArray (i, j) = Int32.Parse(Console.ReadLine)
 Next j
 Next i

 For i = 0 To 2
 For j = 0 To 2
 Console.Write(MyArray (i, j))
 Next j
 Console.Write(Environment.NewLine)
 Next i
 Console.ReadKey()
 End Sub

End Module

Jagged Array

A Jagged array is an array of arrays. The following code shows declaring a jagged array named scores of Integers:

Dim scores As Integer ()() = New Integer(5)(){}

This kind of array is uneven in shape. If the sub arrays you need vary in length, a jagged array becomes extremely

efficient. Jagged arrays can use less memory and be faster than two-dimensional arrays. If the shape of your data is

uneven, they can save a lot of memory.

Following Program demonstrate the use of jagged array. This program uses the ()() syntax after the jagged array

identifier to signify that the array contains other arrays. Temporary arrays are created in the standard way in VB.NET

and then assigned to elements in the jagged array. Two nested For-loops are used to loop through the top-level array

and all the sub arrays.

Module Module1
 Sub Main()

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 ' Create jagged array with maximum index of 2.
 Dim jagged()() As Integer = New Integer(2)() {}
 ' Create temporary array and place in index 0.
 Dim temp(2) As Integer
 temp(0) = 1
 temp(1) = 2
 temp(2) = 3
 jagged(0) = temp
 ' Create small temporary array and place in index 1.
 Dim temp2(0) As Integer
 jagged(1) = temp2
 ' Use array constructor and place result in index 2.
 jagged(2) = New Integer() {3, 4, 5, 6}
 ' Loop through top-level arrays.
 For i As Integer = 0 To jagged.Length - 1
 ' Loop through elements in subarrays.
 Dim inner As Integer() = jagged(i)
 For a As Integer = 0 To inner.Length - 1
 Console.Write(inner(a))
 Console.Write(" "c)
 Next
 Console.ReadLine()
 Next
 End Sub
End Module

The Array Class

The Array class is the base class for all the arrays in VB.Net. It is defined in the System namespace. The Array class

provides various properties and methods to work with arrays.

Module Module1

 Sub Main()
 Dim list As Integer() = {34, 72, 13, 44, 25, 30, 10}
 Dim temp As Integer() = list
 Dim i As Integer
 Console.Write("Original Array: ")
 For Each i In list
 Console.Write("{0} ", i)
 Next i
 Console.WriteLine()
 Array.Reverse(temp)
 Console.Write("Reversed Array: ")
 For Each i In temp
 Console.Write("{0} ", i)
 Next i

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 Console.WriteLine()
 Array.Sort(list)
 Console.Write("Sorted Array: ")
 For Each i In list
 Console.Write("{0} ", i)
 Next i
 Console.WriteLine()
 Console.ReadKey()
 End Sub
End Module

Loop Statements

There may be a situation when you need to execute a block of code several number of times. In general, statements

are executed sequentially: The first statement in a function is executed first, followed by the second, and so on.

A loop statement allows us to execute a statement or group of statements multiple times and following is the general

form of a loop statement in most of the programming languages:

VB.Net provides following types of loops to handle looping requirements. Click the following links to check their

details.

Loop Type Description

Do Loop

It repeats the enclosed block of statements while a Boolean condition is True or until

the condition becomes True. It could be terminated at any time with the Exit Do

statement.

For...Next It repeats a group of statements a specified number of times and a loop index counts

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

the number of loop iterations as the loop executes.

For Each...Next

It repeats a group of statements for each element in a collection. This loop is used for

accessing and manipulating all elements in an array or a VB.Net collection.

While... End While
It executes a series of statements as long as a given condition is True.

With... End With

It is not exactly a looping construct. It executes a series of statements that repeatedly

refer to a single object or structure.

Nested loops
You can use one or more loops inside any another While, For or Do loop.

Loop Control Statements:

Loop control statements change execution from its normal sequence. When execution leaves a scope, all automatic

objects that were created in that scope are destroyed. VB.Net provides the following control statements

Control Statement Description

Exit statement

Terminates the loop or select case statement and transfers execution to the statement

immediately following the loop or select case.

Continue statement

Causes the loop to skip the remainder of its body and immediately retest its condition

prior to reiterating.

GoTo statement

Transfers control to the labeled statement. Though it is not advised to use GoTo

statement in your program.

Do Loop Example

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Module Module1
 Sub Main()

 Dim a As Integer = 1
 Do
 Console.WriteLine("value of a: {0}", a)
 a = a + 1
 Loop While (a <= 10)
 Console.ReadLine()

 End Sub
End Module

For Loop Example

Module Module1
 Sub Main()
 Dim a As Integer
 For a = 1 To 10
 ‘For a = 10 To 20 Step 2
 Console.WriteLine(a)
 Next
 Console.ReadLine()

 End Sub
End Module

For Each Loop Example

Module module1
 Sub Main()
 Dim array() As String = {"dog", "cat", "fish"}

 For Each value As String In array
 Console.WriteLine(value)
 Next
 Console.Read()

 End Sub
End Module

While Loop Example

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Module Module1
 Sub Main()

 Dim a As Integer = 10
 While a < 20
 Console.WriteLine("value of a: {0}", a)
 a = a + 1
 End While
 Console.ReadLine()

 End Sub
End Module

Conditional Statements

Decision making structures require that the programmer specify one or more conditions to be evaluated or tested by the

program, along with a statement or statements to be executed if the condition is true, and optionally, other statements to be

executed if the condition is false. VB.Net provides the following types of decision making statements.

Statement Description

If ... Then statement

 If...Then statement consists of a boolean expression followed by one or more

statements.

If...Then...Else statement

 If...Then statement can be followed by an optional Else statement, which

executes when the boolean expression is false.

Nested If statements
You can use one If or Else if statement inside another If or Else if statement(s).

Select Case statement

A Select Case statement allows a variable to be tested for equality against a list of

values.

Nested Select Case statements
You can use one select case statement inside another select case statement(s).

If ... Then Statement Example

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Module Module1
 Sub Main()
 Dim a As Integer = 10
 If (a < 20) Then
 Console.WriteLine("a is less than 20")
 End If
 Console.WriteLine("value of a is : {0}", a)
 Console.ReadLine()
 End Sub
End Module

If ... Then...Else Statement Example

Module Module1
 Sub Main()
 Dim a As Integer = 100
 If (a < 20) Then
 Console.WriteLine("a is less than 20")
 Else
 Console.WriteLine("a is not less than 20")
 End If
 Console.WriteLine("value of a is : {0}", a)
 Console.ReadLine()
 End Sub
End Module

Nested If Statement Example

Module Module1
 Sub Main()
 Dim a As Integer = 100
 Dim b As Integer = 200
 If (a = 100) Then
 If (b = 200) Then
 Console.WriteLine("Value of a is 100 and b is 200")
 End If
 End If
 Console.WriteLine("Exact value of a is : {0}", a)
 Console.WriteLine("Exact value of b is : {0}", b)
 Console.ReadLine()
 End Sub
End Module

Select ...Case Statement Example

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Module Module1
 Sub Main()
 Dim grade As Char
 Console.WriteLine("Enter grade A,B,C,D,E,F")
 grade = Console.ReadLine()

 Select Case grade
 Case "A"
 Console.WriteLine("Excellent!")
 Case "B", "C"
 Console.WriteLine("Well done")
 Case "D"
 Console.WriteLine("You passed")
 Case "F"
 Console.WriteLine("Better try again")
 Case Else
 Console.WriteLine("Invalid grade")
 End Select
 Console.WriteLine("Your grade is {0}", grade)
 Console.ReadLine()
 End Sub
End Module

Nested Select ...Case Statement Example

Module Module1
 Sub Main()
 Dim a As Integer = 100
 Dim b As Integer = 200
 Select Case a
 Case 100
 Console.WriteLine("This is part of outer case ")
 Select Case b
 Case 200
 Console.WriteLine("This is part of inner case ")
 End Select
 End Select
 Console.WriteLine("Exact value of a is : {0}", a)
 Console.WriteLine("Exact value of b is : {0}", b)
 Console.ReadLine()
 End Sub
End Module

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

VB.Net Controls

Form: Visual Basic Form is the container for all the controls that make up the user interface. Every window you see in a

running visual basic application is a form, thus the terms form and window describe the same entity. Visual Studio creates a
default form for you when you create a Windows Forms Application. Every form will have title bar on which the form's
caption is displayed and there will be buttons to close, maximize and minimize the form shown below:

 Properties Methods Events

BackColor: Sets the form background
color.

Close: Closes the form. Click: Occurs when the form is clicked.

Name: This is the actual name of the
form.

Focus: Sets input focus to the control. GotFocus: Occurs when the form
control receives focus.

StartPosition: This property
determines the initial position of the
form when it's first displayed.

Hide: Conceals the control from the
user.

Load: Occurs before a form is displayed
for the first time.

Text: The text, which will appear at the
title bar of the form.

Refresh: Forces the control to
invalidate its client area & immediately
redraw itself and any child controls.

LostFocus: Occurs when the form loses
focus.

Font: This property specify font type,
style, size

Show : Displays the control to the user. VisibleChanged: Occurs when the
Visible property value changes.

Text Box: Text box controls allow entering text on a form at runtime. By default, it takes a single line of text, however, you

can make it accept multiple texts and even add scroll bars to it.

Properties Methods Events

Multiline: Gets or sets a value
indicating whether this is a multiline
Textbox control.

Clear: Clears all text from the text box
control.

Click: Occurs when the control is
clicked.

PasswordChar: Gets or sets the
character used to mask characters of a
password in a single-line Textbox
control.

ToString: Returns a string that
represents the TextBoxBase control.

DoubleClick: Occurs when the control
is double-clicked.

ReadOnly: Gets or sets a value
indicating whether text in the text box
is read-only.

Undo: Undoes the last edit operation
in the text box.

TextAlignChanged: Occurs when the
TextAlign property value changes.

Text: Gets or sets the current text in
the Textbox.

ResetText: Resets the Text property to
its default value.

TextLength: Gets the length of text in
the control.

AppendText: Appends text to the
current text of a text box.

Label: The Label control represents a standard Windows label. It is generally used to display some informative text on the

GUI which is not changed during runtime.

Properties Methods Events

ForeColor: Gets or sets the foreground
color of the control.

Refresh: Forces the control to
invalidate its client area and
immediately redraw itself and any child

GotFocus: Occurs when the control
receives focus.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

controls.

Text: Gets or sets the text associated
with this control.

Select: Activates the control. LostFocus: Occurs when the control
loses focus.

TextAlign: Gets or sets the alignment
of text in the label.

Show: Displays the control to the user. TextChanged: Occurs when the Text
property value changes.

FlatStyle: Gets or sets the flat style
appearance of the Label control

ToString: Returns a String that contains
the name of the control.

Click: Occurs when the control is
clicked.

BorderStyle: Gets or sets the border
style for the control.

 TabIndexChanged: Occurs when the
TabIndex property value changes.

Button: The Button control represents a standard Windows button. It is generally used to generate a Click event by

providing a handler for the Click event.

Properties Methods Events

BackColor: Gets or sets the background
color of the control.

Select: Activates the control. Click: Occurs when the control is
clicked.

ForeColor: Gets or sets the foreground
color of the control.

ToString: Returns a String containing the
name of the Component, if any. This
method should not be overridden.

DoubleClick: Occurs when the user
double-clicks the Button control.

Text: Gets or sets the text associated
with this control.

GetPreferredSize: Retrieves the size of a
rectangular area into which a control can
be fitted.

GotFocus: Occurs when the control
receives focus.

TabIndex: Gets or sets the tab order of
the control within its container.

 TextChanged: Occurs when the Text
property value changes.

Image: Gets or sets the image that is
displayed on a button control.

 TabIndexChanged: Occurs when the
TabIndex property value changes.

Radio Button: The Radio Button control is used to provide a set of mutually exclusive options. The user can select one

radio button in a group. If you need to place more than one group of radio buttons in the same form, you should place them in
different container controls like a Group Box control.

Properties Methods Events

Appearance: Gets or sets a value
determining the appearance of the
radio button

PerformClick: Generates a Click event for the
control, simulating a click by a user.

AppearanceChanged: Occurs when
the value of the Appearance
property of the Radio Button control
is changed.

Checked: Gets or sets a value
indicating whether the control is
checked.

 CheckedChanged: Occurs when the
value of the Checked property of the
Radio Button control is changed.

Text: Gets or sets the caption for a
radio button.

Check Box: The Check Box control allows the user to set true/false or yes/no type options. The user can select or deselect it.

When a check box is selected it has the value True, and when it is cleared, it holds the value False. The CheckBox control has
three states, checked, unchecked and indeterminate. In the indeterminate state, the check box is grayed out. To enable the
indeterminate state, the ThreeState property of the check box is set to be True.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Properties Methods Events

ThreeState: Gets or sets a value
indicating whether or not a check
box should allow three check states
rather than two.

OnCheckedChanged: Raises the
CheckedChanged event.

AppearanceChanged: Occurs when the value of
the Appearance property of the check box is
changed.

Checked: Gets or sets a value
indicating whether the check box is
selected.

OnCheckStateChanged: Raises
the CheckStateChanged event.

CheckedChanged: Occurs when the value of the
Checked property of the CheckBox control is
changed.

Appearance: Gets or sets a value
determining the appearance of the
check box.

OnClick: Raises the OnClick
event.

CheckStateChanged: Occurs when the value of
the CheckState property of the CheckBox
control is changed.

Picture Box: The Picture Box control is used for displaying images on the form. The Image property of the control allows

you to set an image either at design time or at run time.

Properties Methods Events

Image: Gets or sets the image that
is displayed in the control.

Load: Displays an image in the
picture box

Click: Occurs when the control is clicked.

ImageLocation: Gets or sets the
path or the URL for the image
displayed in the control.

 Resize: Occurs when the control is resized.

Combo Box: The Combo Box control is used to display a drop-down list of various items. It is a combination of a text box in

which the user enters an item and a drop-down list from which the user selects an item.

Properties Methods Events

DataBindings: Gets the data bindings
for the control.

FindString: Finds the first item in the
combo box that starts with the
string specified as an argument.

SelectedIndexChanged : Occurs when the
SelectedIndex property of a Combo Box
control has changed.

DataSource: Gets or sets the data
source for this Combo Box.

FindStringExact: Finds the first item
in the combo box that exactly
matches the specified string.

DropDownStyleChanged: Occurs when
the DropDownStyle property of the
Combo Box has changed.

SelectedIndex: Gets or sets the index
specifying the currently selected item.

SelectAll: Selects all the text in the
editable area of the combo box.

DropDown: Occurs when the drop-down
portion of a combo box is displayed.

Items: Gets an object representing the
collection of the items contained in
this Combo Box.

SelectedItem: Gets or sets currently
selected item in the Combo Box.

SelectedText: Gets or sets the text
that is selected in the editable portion
of a Combo Box.

SelectedValue: Gets or sets the value
of the member property specified by
the Value Member property.

List Box: The List Box represents a Windows control to display a list of items to a user. A user can select an item from the

list. It allows the programmer to add items at design time by using the properties window or at the runtime.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Properties Methods Events

Items: Gets the items of the list box. Click: Occurs when a list box is selected.

SelectedIndex: Gets or sets the zero-
based index of the currently selected
item in a list box.

OnSelectedIndexChanged: Raises
the SelectedIndexChanged event.

SelectedIndexChanged: Occurs when the
SelectedIndex property of a list box is
changed.

SelectedIndices: Gets a collection that
contains the zero-based indexes of all
currently selected items in the list box.

OnSelectedValueChanged: Raises
the SelectedValueChanged event.

SelectedItem: Gets or sets the
currently selected item in the list box.

SetSelected: Selects or clears the
selection for the specified item in a
List Box.

SelectedItems: Gets a collection
containing the currently selected items
in the list box.

GetSelected: Returns a value
indicating whether the specified
item is selected.

SelectedValue: Gets or sets the value
of the member property specified by
the ValueMember property.

ClearSelected : Unselects all items in
the List Box.

SelectionMode: Gets or sets the
method in which items are selected in
the list box. This property has values:
None, One, MultiSimple,
MultiExtended

Scroll Bars: The ScrollBar controls display vertical and horizontal scroll bars on the form. This is used for navigating through

large amount of information. There are two types of scroll bar controls: HScrollBar for horizontal scroll bars and VScrollBar for
vertical scroll bars. These are used independently from each other.

Properties Methods Events

Maximum: Gets or sets the upper limit
of values of the scrollable range.

OnClick: Generates the Click
event.

Scroll: Occurs when the control is moved.

Minimum: Gets or sets the lower limit
of values of the scrollable range.

Select: Activates the control. ValueChanged: Occurs when the Value property
changes, either by handling the Scroll event or
programmatically.

Tree View: The Tree View control is used to display hierarchical representations of items similar to the ways the files and

folders are displayed in the left pane of the Windows Explorer. Each node may contain one or more child nodes.

Properties Methods Events

DataBindings: Gets the data bindings
for the control.

CollapseAll: Collapses all the
nodes including all child nodes
in the tree view control.

TextChanged: Occurs when the Text property
changes.

Nodes: Gets the collection of tree
nodes that are assigned to the tree
view control.

ExpandAll: Expands all the
nodes.

AfterSelect: Occurs after the tree node is
selected.

PathSeparator: Gets or sets the
delimiter string that the tree node
path uses.

GetNodeAt: Gets the node at
the specified location.

AfterCollapse: Occurs after the tree node is
collapsed.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

SelectedNode: Gets or sets the tree
node that is currently selected in the
tree view control.

GetNodeCount: Gets the
number of tree nodes.

AfterExpand: Occurs after the tree node is
expanded.

ShowLines: Gets or sets a value
indicating whether lines are drawn
between tree nodes in the tree view
control.

Sort : Sorts all the items in the
tree view control.

ShowPlusMinus: Gets or sets a value
indicating whether plus-sign (+) and
minus-sign (-) buttons are displayed
next to tree nodes that contain child
tree nodes.

ToString : Returns a string
containing the name of the
control.

ShowRootLines: Gets or sets a value
indicating whether lines are drawn
between the tree nodes that are at the
root of the tree view.

List View: The ListView control is used to display a list of items. Along with the TreeView control, it allows you to create a

Windows Explorer like interface. he ListView control displays a list of items along with icons. The Item property of the ListView
control allows you to add and remove items from it. The SelectedItem property contains a collection of the selected items. The
MultiSelect property allows you to set select more than one item in the list view. The CheckBoxes property allows you to set
check boxes next to the items.

Properties Methods Events

Items: Gets a collection containing all
items in the control.

Clear: Removes all items from
the ListView control.

SelectedIndexChanged: Occurs when the
selected index is changed.

MultiSelect: Gets or sets a value
indicating whether multiple items can
be selected.

ToString: Returns a string
containing the string
representation of the control.

TextChanged: Occurs when the Text property
is changed.

SelectedIndices: Gets the indexes of
the selected items in the control.

 ItemCheck: Occurs when an item in the
control is checked or unchecked.

SelectedItems: Gets the items that are
selected in the control.

CheckBoxes: Gets or sets a value
indicating whether a check box
appears next to each item in the
control.

Image List: The main advantage of using the ImageList is that you can treat the images as a collection. ImageList Control is

used to store images that can be used with other controls. This control works fine with the controls that have the ImageList
and ImageIndex property.

Properties Methods Events

Images: Property gets an ImageCollection object for
this image list.

Draw: Method used to draw
the given image.

Timer: Timer Control is used to set time intervals; this control is visible only at design time and not in the runtime.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Properties Methods Events

Enabled: Property used to Get or set whether the
timer is running.

Start: Method used to start
timer.

Tick: Triggered when the time
interval has elapsed.

Interval: Property used to set or get the time in
millisecond between the timer clicks.

Stop: Method used to stop
timer.

Splitters: Permits the user to resize docked controls at runtime, With additional Splitter controls You can divide the form

into smaller and smaller resizable areas Make sure to include a container control to hold the Splitter and the two docked
controls SplitContainer control provides functionality of a splitter to divide and resize two controls.

Properties Methods Events

SplitterDistance: this property gets or sets the
location of the splitter, in pixels, from the left or top
edge of the SplitContainer.

SplitterIncrement: this property gets or sets a value
representing the increment of splitter movement in
pixels.

SplitterRectangle: this property gets the size and
location of the splitter relative to the
SplitContainer.

Orientation: Panels on a SplitContainer can be
placed horizontally or vertically.

Progress Bar: It represents a Windows progress bar control. It is used to provide visual feedback to your users about the

status of some task. It shows a bar that fills in from left to right as the operation progresses. The ProgressBar control is
typically used when an application performs tasks such as copying files or printing documents. To a user the application might
look unresponsive if there is no visual cue. In such cases, using the ProgressBar allows the programmer to provide a visual
status of progress.

Properties Methods Events

Maximum: Gets or sets the maximum
value of the range of the control.

Increment: Increments the current
position of the ProgressBar control by
specified amount.

Click: Occurs when the control is
clicked.

Minimum: Gets or sets the minimum
value of the range of the control.

PerformStep: Increments the value by the
specified step.

TextChanged: Occurs when the
Text property changes.

Value: Gets or sets the current position
of the progress bar.

ResetText: Resets the Text property to its
default value.

Menu Strip: The MenuStrip control represents the container for the menu structure. The MenuStrip control works as the

top-level container for the menu structure. The ToolStripMenuItem class and the ToolStripDropDownMenu class provide the
functionalities to create menu items, sub menus and drop-down menus.

Properties Methods Events

GripStyle: Gets or sets the visibility of the grip
used to reposition the control.

 MenuActivate: Occurs when the user accesses the
menu with the keyboard or mouse.

Stretch: Gets or sets a value indicating whether
the MenuStrip stretches from end to end in its
container.

 MenuDeactivate: Occurs when the MenuStrip is
deactivated.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

ShowItemToolTips: Gets or sets a value indicating
whether ToolTips are shown for the MenuStrip.

MdiWindowListItem: Gets or sets the
ToolStripMenuItem that is used to display a list of
Multiple-document interface (MDI) child forms.

Status Bar: The Status Bar presents a single panel at the bottom of form

Tool Bar: A toolbar is a bar that displays in the top section under the main menu. A toolbar is primarily a container, which

itself means nothing and doesn't even do anything. The controls you position on it give it meaning. Still, because of its
position, it enjoys some visual characteristics but also imposes some restrictions to its objects. When you add a toolbar to a
form, it automatically positions itself in the top section of the form and uses the same width as the form. This means that the
default Dock value of a toolbar is Top. The ToolStripMenuItem class supports the menus and menu items in a menu system.
You handle these menu items through the click events in a menu system.

Properties Methods Events

Enabled: Gets or sets a value indicating whether the control is
enabled

 CheckedChanged: Occurs when the value
of the Checked property changes.

ShortcutKeys: Gets or sets the shortcut keys associated with
the ToolStripMenuItem.

 CheckStateChanged: Occurs when the
value of the CheckState property changes.

ShowShortcutKeys: Gets or sets a value indicating whether the
shortcut keys that are associated with the ToolStripMenuItem
are displayed next to the ToolStripMenuItem.

Checked: Gets or sets a value indicating whether the
ToolStripMenuItem is checked.

CheckOnClick: Gets or sets a value indicating whether the
ToolStripMenuItem should automatically appear checked and
unchecked when clicked.

CheckState: Gets or sets a value indicating whether a
ToolStripMenuItem is in the checked, unchecked, or
indeterminate state.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

VB.NET - DIALOG BOXES
There are many built-in dialog boxes to be used in Windows forms for various tasks like opening and saving files,
Printing a page, providing choices for colors, fonts, page set up etc. to the user of an application. These built-in dialog boxes
reduce the developer's time and work load.

All of these dialog box control classes inherit from the CommonDialog class and override the RunDialog() function of the base
class to create the specific dialog box.

The RunDialog() function is automatically invoked when a user of a dialog box calls its ShowDialog() function.
The ShowDialog method is used to display all the dialog box controls at run time.

The following diagram shows the common dialog class inheritance:

All these above mentioned classes have corresponding controls that could be added from the Toolbox during design time. You
can include relevant functionality of these classes to your application, either by instantiating the class programmatically or by
using relevant controls. When you double click any of the dialog controls in the toolbox or drag the control onto the form, it
appears in the Component tray at the bottom of the Windows Forms Designer, they do not directly show up on the form.

The following table lists the commonly used dialog box controls. Click the following links to check their detail:

ColorDialog: It represents a common dialog box that displays available colors along with controls that enable the user to
define custom colors.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 If ColorDialog1.ShowDialog <> Windows.Forms.DialogResult.Cancel Then

 Label1.ForeColor = ColorDialog1.Color

 End If

End Sub

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

FontDialog: It prompts the user to choose a font from among those installed on the local computer and lets the user select the
font, font size, and color.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 If FontDialog1.ShowDialog <> Windows.Forms.DialogResult.Cancel Then
 RichTextBox1.ForeColor = FontDialog1.Color
 RichTextBox1.Font = FontDialog1.Font
 End If
End Sub

SaveFileDialog: It prompts the user to select a location for saving a file and allows the user to specify the name of the file to
save data.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 SaveFileDialog1.Filter = "TXT Files (*.txt*)|*.txt"
 If SaveFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
 My.Computer.FileSystem.WriteAllText (SaveFileDialog1.FileName, RichTextBox1.Text, True)
 End If
End Sub

PrintDialog: It lets the user to print documents by selecting a printer and choosing which sections of the document to print
from a Windows Forms application.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 PrintDialog1.Document = PrintDocument1
 PrintDialog1.PrinterSettings = PrintDocument1.PrinterSettings
 PrintDialog1.AllowSomePages = True
 If PrintDialog1.ShowDialog = DialogResult.OK Then
 PrintDocument1.PrinterSettings = PrintDialog1.PrinterSettings
 PrintDocument1.Print()
 End If
End Sub

OpenFileDialog: It prompts the user to open a file and allows the user to select a file to open.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 If OpenFileDialog1.ShowDialog <> Windows.Forms.DialogResult.Cancel Then
 PictureBox1.Image = Image.FromFile(OpenFileDialog1.FileName)
 End If
End Sub

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Delegate:
A delegate is very much like a C/C++ 'function pointer' or a 'typedef that represents the address of a function'. In C/C++, the
address of a function is just a memory address. The C/C++ function pointer holds only the address of a function. This address
doesn't carry any additional information, such as the number of parameters expected by the function, types of parameters it
takes etc. In fact, this all makes a function pointer type unsafe. Traditionally, calling a function by its address depends on the
language supporting the function pointers. And function pointers are inherently dangerous. Delegates add a safety to the idea
of traditional function pointers.
The .NET framework has added the bonus of providing a type-safe mechanism called Delegates. They follow a Trust-But-Verify
model, with automatic verification of the signature by the compiler. Unlike function pointers however, delegates are object-
oriented, type-safe, and secured. In short, a delegate is a data structure that refers to a static method or to an object instance,
and an instance method of that object. When the delegate references an instance method, it stores not only a reference to
the method entry point, but also a reference to the object instance for which to invoke the method. In VB.NET, we define a
delegate using the 'Delegate' keyword.

 E.g.: Public Delegate Sub MyDelegate(ByVal MsgString As String)

"Delegate" is a name used to describe procedures -- that is, functions and subroutines -- in VB.NET. Just like the type Integer
refers to whole numbers and the type Boolean refers to true or false, the type Delegate refers to procedures. The syntax of
declaring a Delegate is almost the same. You don't use the Dim keyword but you can use a keyword like Public or Private just
like you would with another declaration. A delegate is declared by coding the name and signature of a procedure with the
keyword Delegate.

Example

Imports System

Module Module1

 Public Delegate Sub MyDel(ByVal Msg As String)

 Public Class Demo

 Public Sub TestSub(ByVal Msg As String)

 Console.WriteLine("I am in a TestSub=" & Msg & Msg)

 End Sub

 Public Sub TestMsgBox(ByVal Msg As String)

 Console.WriteLine("I am in a TestMsgBox=" & Msg)

 End Sub

 End Class

 Sub Main()

 Dim T As New Demo

 Dim D As MyDel

 D = AddressOf T.TestSub

 D("Hello")

 D = AddressOf T.TestMsgBox

 D("Hello")

 Console.Read()

 End Sub

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

End Module

Example Program for Delegate

Imports System

Module Module1

'Defining the delegate
 Public Delegate Sub GreetingDelegate(ByVal MsgString As String)

'Two different functions
 Public Sub GoodMoring(ByVal YourName As String)

 Console.WriteLine("Good Morning " + YourName + " !")

 End Sub

 Public Sub GoodNight(ByVal YourName As String)

 Console.WriteLine("Good Night " + YourName + " !")

 End Sub

‘Main Method
 Sub Main()

'Instantiating the delegate
 Dim MyGreeting As GreetingDelegate

'Here we assign the address of the function we wish to encapsulate to the delegate
 Console.WriteLine("Adding 'GoodMoring' Reference To A Delegate...")

 MyGreeting = AddressOf GoodMoring

'Invoking the delegate
 Console.WriteLine("Invoking Delegate...")

 MyGreeting.Invoke("HIMANSHU")

'Assiging the addressof the another function to the same delegate
 Console.WriteLine()

 Console.WriteLine("Making Existing Delegate To Point To Another Fuction.")

 Console.WriteLine("Replacing With 'GoodNight' Reference...")

 MyGreeting = New GreetingDelegate(AddressOf GoodNight)

'Another way of invoking the delegate.
 Console.WriteLine("Invoking Delegate...")

 MyGreeting("HIMANSHU")

 End Sub

End Module

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Class Library Overview
The .NET Framework class library is a library of classes, interfaces, and value types that provide access to system functionality.
It is the foundation on which .NET Framework applications, components, and controls are built.

This is also called as Base Class Library (BCL) and it is common for all types of applications i.e. the way you access the Library
Classes and Methods in VB.NET will be the same in C#, and it is common for all other languages in .NET. The following are
different types of applications that can make use of .net class library.

5. Windows Application- It is desktop application.

6. Console Application- an application that takes input and displays output at a command line console.
7. Web Application- All websites are example of web application. They use a web server.

8. Web Services- It doesn't use web-based server. Internet payment systems are example of web services.

In short, developers just need to import the BCL in their language code and use its predefined methods and properties to
implement common and complex functions like reading and writing to file, graphic rendering, database interaction, and XML
document manipulation.

FCL includes some 600 managed classes. A flat hierarchy consisting of hundreds of classes would be difficult to

navigate. Microsoft partitioned the managed classes of FCL into separate namespaces based on functionality. For

example, classes pertaining to local input/output can be found in the namespace System.IO. To further refine the

hierarchy, FCL namespaces are often nested; the tiers of namespaces are delimited with dots.

System.Runtime.InteropServices, System.Security.Permissions, and System.Windows.Forms are examples of

nested namespaces. The root namespace is System, which provides classes for console input/output, management of

application domains, delegates, garbage collection, and more. Some examples are as follows-

System: Contains fundamental classes and base classes that define commonly used value and reference data types, events
and event handlers, interfaces, attributes, and processing exceptions. Other classes provide services supporting data type
conversion, method parameter manipulation, mathematics, remote and local program invocation, application environment
management, and supervision of managed and unmanaged applications.

System.Data: Contains classes that constitute most of the ADO.NET architecture. The ADO.NET architecture enables you to
build components that efficiently manage data from multiple data sources.

System.Data.Design: Contains classes that can be used to generate a custom typed dataset.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

System.Data.SqlClient: Contains classes that encapsulate the .NET Framework Data Provider for SQL Server. The .NET
Framework Data Provider for SQL Server describes a collection of classes used to access a SQL Server database in the managed
space.

System.Drawing: Provides access to GDI+ basic graphics functionality. More advanced functionality is provided in the
System.Drawing.Drawing2D, System.Drawing.Imaging, and System.Drawing.Text namespaces.

System.IO: Contains types that enable synchronous and asynchronous reading and writing on data streams and files.

System.Net: Provides a simple programming interface for many of the protocols used on networks today. The WebRequest
and WebResponse classes form the basis of what are called pluggable protocols, an implementation of network services that
enables you to develop applications that use Internet resources without worrying about the specific details of the individual
protocols.

System.Web: Provides classes and interfaces that enable browser-server communication. This namespace includes the
HttpRequest class, which provides extensive information about the current HTTP request, the HttpResponse class, which
manages HTTP output to the client, and the HttpServerUtility class, which provides access to server-side utilities and
processes. System.Web also includes classes for cookie manipulation, file transfer, exception information, and output cache
control.

Creating User Defined Class
When you define a class, you define a blueprint for a data type. This doesn't actually define any data, but it does

define what the class name means, that is, what an object of the class will consist of and what operations can be

performed on such an object.

Objects are instances of a class. The methods and variables that constitute a class are called members of the class.

Objects (Instance Variable) and Classes

Each object in Visual Basic is defined by a class. A class describes the variables, properties, procedures, and events

of an object. Objects are instances of classes; you can create as many objects you need once you have defined a class.

 Dim <object name> as New <Class Name>()

Dim obj As New Test()

Member Functions and Data Member

A member function of a class is a function that has its definition or its prototype within the class definition like any

other variable. It operates on any object of the class of which it is a member and has access to all the members of a

class for that object.

Member variables are attributes of an object (from design perspective) and they are kept private to implement

encapsulation. These variables can only be accessed using the public member functions.

Differences between Classes and Modules

The main difference between classes and modules is that classes can be instantiated as objects while standard

modules cannot. Because there is only one copy of a standard module's data, when one part of your program changes

a public variable in a standard module, any other part of the program gets the same value if it then reads that variable.

In contrast, object data exists separately for each instantiated object.

Classes and modules also use different scopes for their members. Members defined within a class are scoped within a

specific instance of the class and exist only for the lifetime of the object. To access class members from outside a

class, you must use fully qualified names in the format of Object.Member.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

On the other hand, members declared within a module are publicly accessible by default, and can be accessed by any

code that can access the module. This means that variables in a standard module are effectively global variables

because they are visible from anywhere in your project, and they exist for the life of the program.

Example

Imports System
Module Module1

 Public Class Test
 Sub Display ()
 Console.Write ("VB Dot Net")
 End Sub
 End Class

Sub Main ()
 Dim obj As New Test () --------------------------- Creating Object of the class
 obj.Display ()
 Console.Read ()
End Sub

End Module

Constructor and Instance Variable (Object)

Constructor
1) A constructor is a special member function whose task is to initialize the objects of it's class. This is the first
 method that is run when an instance of a type is created. A class can have multiple constructors.
2) A constructor is invoked whenever an object of it's associated class is created. If a class contains a constructor,
 then an object created by that class will be initialized automatically.
3) We pass data to constructor by enclosing it in the parentheses when creating an object.
4) Constructors can never return a value, and can be overridden to provide custom initialization functionality.
5) In .Net we create constructors by adding a Sub procedure named New to a class, regardless the name of class
6) It can have any access modifier (Public, Protected, Friend, Private, or Default). In most cases, a constructor has
 a Public access modifier.

Example:

Imports System

Module Module1

Public Class Cons

 Public a,b,temp as Integer

 Public sub New()

 Console.WriteLine("WELCOME IN SWAPPING PROGRAME")

 End Sub

 Public Sub New(ByVal x as Integer,ByVal y as Integer)

 a=x

 b=y

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 temp=a

 a=b

 b=temp

 End Sub

 Public Function Ans() as integer

 Console.WriteLine("Swaped Value Of A==>"&a)

 Console.WriteLine("Swaped Value Of b==>"&b)

 End Function

End Class

Sub Main()

 Dim p,q as integer

 Console.Write("Enter Value of A==>")

 p= Console.ReadLine()

 Console.Write("Enter Value of B==>")

 q=Console.ReadLine()

 Dim obj1 as New Cons()

 Dim obj As New Cons(p,q)

 obj.Ans()

End Sub

End Module

Destructor
A destructor, also known as finalizer, is the last method run by a class. Within a destructor we can place code to clean up the
object after it is used, which might include decrementing counters or releasing resources. We use Finalize method in Visual
Basic for this and the Finalize method is called automatically when the .NET runtime determines that the object is no longer
required. When working with destructors we need to use the overrides keyword with Finalize method as we will override the
Finalize method built into the Object class. We normally use Finalize method to deallocate resources and inform other objects
that the current object is going to be destroyed. Because of the nondeterministic nature of garbage collection, it is very hard
to determine when a class's destructor will be called.

Imports System

Module Module1

Public Class Destructor

 Public Sub New()

 Console.Writeline("Constructor Running")

 End Sub

 Protected Overrides Sub Finalize()

 Console.Writeline("Destructor Running")

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 Console.ReadLine()

 End Sub

End Class

Sub Main()

 Dim obj As New Destructor()

End Sub

End Module

Instance Variable (Fields/Objects)
Fields are variable that declared so that they are available to all code within a class. Typically fields are private in scope,
available only to the code in the class itself. They are also sometimes referred to as instance variable, member variable or data
member.
Property and fields are both different terminology. A property is a type of method that is geared to retrieving and setting
values, while a field is variable within the class that may hold the value exposed by the property.

Public Class Student

 Private Sname as string

 Public Age as integer

 Public Sub getValue(Bval sn as integer,Byval ag as integer)

 Sname=sn

 Age=ag

 End Sub

 Public Sub display()

 Console.Writeline("Student Name="&Sname)

 Console.Writeline("Student Age="&Age)

 End Sub

End Class

Sub Main()

 Dim obj As New Student()

 obj.getvalue(“John”,28)

 obj.display()

 Console.Readline

End Sub

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Error Handling (Exception Handling) in Dot Net

An error is a term used to describe any issue that arises unexpectedly that causes a computer to not function properly.

Computers can encounter either software errors or hardware errors. Following types of error generally comes to

existence while programming-

1) Syntax Errors

These errors are the easiest to find because they are highlighted by the compiler. This type of error is caused by the

failure of the programmer to use the correct grammatical rules of the language. Syntax errors are detected, and

displayed, by the compiler as it attempts to translate your program, i.e. the Source code into the Object code. If a

program has a syntax error it cannot be translated, and the program will not be executed.

The compiler tries to highlight syntax errors where there seems to be a problem, however, it is not perfect and

sometimes the compiler will indicate the next line of code as having the problem rather than the line of code where

the problem actually exists.

2) Run-Time Errors

Run-time errors are detected by the computer and displayed during execution of a program. They will halt the

program when they occur but they often do not show up for some time. A run-time error occurs when the user directs

the computer to perform an illegal operation, eg: Dividing a number by zero, Assigning a variable to the wrong type

of variable, Using a variable in a program before assigning a value to it.

When a run-time error occurs, the computer stops executing your program, and displays a diagnostic message that

indicates the line where the error occurred.

3) Logic Errors

These are the hardest errors to find as they do not halt the program. They arise from faulty thinking on behalf of the

programmer. They can be very troublesome. These are mistakes in a program's logic. Programs with logic errors will

often compile, execute, and output results. However, at least some of the time the output will be incorrect. Error

messages will generally not appear if a logic error occurs, this makes logic errors very difficult to locate and correct.

Exception Handling/Error Handling
An exception is a problem that arises during the execution of a program. An exception is a response to an

exceptional circumstance that arises while a program is running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. VB.Net exception handling is

built upon four keywords: Try, Catch, Finally and Throw.

 Try: A Try block identifies a block of code for which particular exceptions will be activated. It's followed by

one or more Catch blocks.

 Catch: A program catches an exception with an exception handler at the place in a program where you want

to handle the problem. The Catch keyword indicates the catching of an exception.

 Finally: The finally block is used to execute a given set of statements, whether an exception is thrown or not

thrown. For example, if you open a file, it must be closed whether an exception is raised or not.

 Throw: A program throws an exception when a problem shows up. This is done using a Throw keyword.

Public Class Form1
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
 Try
 Dim i As Integer
 Dim resultValue As Integer

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 i = 100
 resultValue = i / 0
 MsgBox("The result is " & resultValue)
 Catch ex As Exception
 MsgBox("Exception catch here ..")
 Finally
 MsgBox("Finally block executed ")
 End Try
 End Sub
End Class

Exception Classes in .Net Framework
In the .Net Framework, exceptions are represented by classes. The exception classes in .Net Framework are mainly

directly or indirectly derived from the System.Exception class. Some of the exception classes derived from the

System.Exception class are the System.ApplicationException and System.SystemException classes.

The System.ApplicationException class supports exceptions generated by application programs. So the exceptions

defined by the programmers should derive from this class. The System.SystemException class is the base class for

all predefined system exception.

System.Exception

System.Exception represents errors that occur during application execution. This is the base class for all exceptions in

VB.net, so any other type of exception must be derived from it. The Exception class is present in the System

namespace and in the assembly mscorlib.dll. Some Important Properties of the Exception class:
 StackTrace: This StackTrace property can be used to determine where the error occurred.
 Message: The Message property returns a description to the error's cause.
 InnerException: The InnerException property can be used to create and preserve a series of exceptions during

exception handling.
 HelpLink: The HelpLink property can hold a URL to a help file that provides extensive information about the cause of

the exception.

The following are some of the predefined exception classes derived from the Sytem.SystemException class:

Exception Class Description

System.IO.IOException Handles I/O errors.

System.IndexOutOfRangeException Handles errors generated when an array index out of range.

System.ArrayTypeMismatchException Handles errors generated when type is mismatched with the array type.

System.NullReferenceException Handles errors generated from differencing a null object.

System.DivideByZeroException Handles errors generated from dividing a dividend with zero.

System.InvalidCastException Handles errors generated during typecasting.

System.OutOfMemoryException Handles errors generated from insufficient free memory.

System.StackOverflowException Handles errors generated from stack overflow.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

The Err Object:
Err is a special Visual Basic object that’s assigned detailed error handling information each time a runtime error occurs. The
most useful Err properties for identifying runtime errors are Err.Number and Err.Description.
Err.Number: contains the number of the most recent runtime error.
Err.Description: a short error message that matches the runtime error numbers.

Error Number Default Error Message

5 Procedure call or argument is not valid

6 Overflow

7 Out of Memory

11 Division by Zero

51 Internal Error

52 Bad file name or number

53 File not found

55 File already open

76 Path not found

482 Printer error

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

VB.Net Database Access:
Applications communicate with a database, by inserting, modifying and deleting data. Microsoft ActiveX Data Objects.Net
(ADO.Net) is a model, a part of the .Net framework that is used by the .Net applications for retrieving, accessing and updating
data.

ADO.Net Object Model: ADO.Net object model is nothing but the structured process flow through various components. The
object model can be pictorially described as:

The data residing in a database is retrieved through the data provider. Various components of the data provider, retrieves
data and update data. An application accesses data either through a dataset or a data reader.

 Data sets: store data in a disconnected cache and the application retrieve data from it.

 Data readers: provide data to the application in a read-only and forward-only mode.

Core ADO.NET Namespaces

 System.Data: It makes up the core objects such as DataTable, DataColumn, DataView, and Constraints, to

name a few. This namespace forms the basis for the others.

 System.Data.OleDb: Defines objects that we use to connect to and modify data in various data sources. It

contained drivers for Microsoft SQL Server, the Microsoft OLE DB Provider for Oracle, and Microsoft

Provider for Jet 4.0. This class is useful if your project connects to many different data sources, but you want

more performance than the ODBC provider.

 System.Data.SqlClient: A data provider namespace created specifically for Microsoft SQL Server version

7.0 and later. When using Microsoft SQL Server, this namespace is written to take advantage of the Microsoft

SQL Server API directly

 System.Data.SQLTypes: Provides classes for data types specific to Microsoft SQL Server. These classes are

designed specifically for SQL Server and provide better performance.

 System.Data.ODBC: This namespace is intended to work with all compliant ODBC drivers, and is available

as a separate download from Microsoft

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

--Data

Provider: A data provider is used for connecting to a database, executing commands and retrieving data, storing it in a

dataset, reading the retrieved data and updating the database. The data provider in ADO.Net consists of the following

four objects:

1. Connection: This component is used to set up a connection with a data source.

2. Command: A command is a SQL statement or a stored procedure used to retrieve, insert, delete or modify

data in a data source.

3. DataReader: It is used to retrieve data from a data source in a read-only and forward-only mode.

4. DataAdapter: This is integral to the working of ADO.Net since data is transferred to and from a database

through a data adapter. It retrieves data from a database into a dataset and updates the database. When

changes are made to the dataset, the changes in the database are actually done by the data adapter.
The Command, Connection, DataReader, and DataAdapter are the core objects in ADO.NET. They form the basis for all
operations regarding data in .NET. These objects are created from the System.Data.OleDb, System.Data.SqlClient, and the
System.Data.ODBC namespaces.

There are following different types of data providers included in ADO.Net

 The .Net Framework data provider for SQL Server - provides access to Microsoft SQL Server.

 The .Net Framework data provider for OLE DB - provides access to data sources exposed by OLE DB.

 The .Net Framework data provider for ODBC - provides access to data sources exposed by ODBC.

 The .Net Framework data provider for Oracle - provides access to Oracle data source.

 The EntityClient provider - enables accessing data through Entity Data Model (EDM) applications.

--

DataSet: DataSet is an in-memory representation of data. It is a disconnected, cached set of records that are retrieved from
a database. When a connection is established with the database, the data adapter creates a dataset and stores data in it. The
DataSet class is present in the System.Data namespace.
 After the data is retrieved and stored in a dataset, the connection with the database is closed. This is called the
'disconnected architecture'. The dataset works as a virtual database, containing tables, rows, and columns. The following
diagram shows the dataset object model:

-

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 DataTableCollection: It contains all the tables retrieved from the data source.

 DataRelationCollection: It contains relationships and the links between tables in a data set.

 ExtendedProperties: It contains additional information, like the SQL statement for retrieving data, time of

retrieval etc.

 DataTable: It represents a table in the DataTableCollection of a dataset. It consists of the DataRow and

DataColumn objects. The DataTable objects are case-sensitive.

 DataRelation: It represents a relationship in the DataRelationshipCollection of the dataset. It is used to relate

two DataTable objects to each other through the DataColumn objects.

 DataRowCollection: It contains all the rows in a DataTable.

 DataView: It represents a fixed customized view of a DataTable for sorting, filtering, searching, editing and

navigation.

 PrimaryKey: It represents the column that uniquely identifies a row in a DataTable.

 DataRow: It represents a row in the DataTable. The DataRow object and its properties and methods are used

to retrieve, evaluate, insert, delete, and update values in the DataTable. The NewRow method is used to create

a new row and the Add method adds a row to the table.

 DataColumnCollection: It represents all the columns in a DataTable.

 DataColumn: It consists of the number columns that comprise a DataTable.

Command Object
The Command objects OleDbCommand and SqlCommand allow us to execute statements directly against the database. They
provide for simple and direct route to our data, regardless of where the data resides. Command objects are particularly useful
for executing INSERT, UPDATE, and DELETE statements, but can also generate DataReader and XMLDataReader

 Command is used to execute almost any SQL command from within the .net

application. The SQL command like insert, update, delete, select, create, alter, drop can be executed with command

object and you can also call stored procedures with the command object.

Command object has the following important properties.
 Connection: used to specify the connection to be used by the command object.
 CommandType: Used to specify the type of SQL command you want to execute. To assign a value to this property, use

the enumeration CommandType that has the members Text, StoredProcedure and TableDirect. Text is the default and
is set when you want to execute ant SQL command with command object. StoredProcedure is set when you want to
call a stored procedure or function and TableDirect is set when you want to retrieve data from the table directly by
specifying the table name without writing a select statement.

 CommandText: Used to specify the SQL statement you want to execute.
 Transaction: Used to associate a transaction object to the command object so that the changes made to the database

with command object can be committed or rollback.

Command object has the following important methods.
 ExecuteNonQuery(): Used to execute an SQL statement that doesn’t return any value like insert, update and delete.

Return type of this method is int and it returns the no. of rows affected by the given statement.
 ExecuteScalar(): Used to execute an SQL statement and return a single value. When the select statement executed by

executescalar() method returns a row and multiple rows, then the method will return the value of first column of first
row returned by the query. Return type of this method is object.

 ExecuteReader(): Used to execute a select a statement and return the rows returned by the select statement as a
DataReader. Return type of this method is DataReader.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Connection Object
The Connection Object is a part of ADO.NET Data Provider and it is a unique session with the Data Source. In .Net Framework
the Connection Object is handling the part of physical communication between the application and the Data Source. Depends
on the parameter specified in the Connection String , ADO.NET Connection Object connect to the specified Database and open
a connection between the application and the Database . When the connection is established, SQL Commands may be
executed, with the help of the Connection Object, to retrieve or manipulate data in the Database. Once the Database activity
is over, Connection should be closed and releases the resources. In ADO.NET the type of the Connection is depend on what
Database system you are working with. The following are the commonly using the connections in the ADO.NET

SqlConnection: designed for connecting to Microsoft SQL Server.
OleDbConnection: designed for connecting to a wide range of databases, like Microsoft Access and Oracle.
For example
Imports System.Data.SqlClient
Module Module1
 Sub Main()
 Dim str As String = "Data Source=.;uid=sa;pwd=123;database=master"
 Dim con As New SqlConnection(str)
 Try
 con.Open()
 Console.WriteLine("connection open")
 con.Close()
 Catch ex As Exception
 Console.WriteLine("can not open connection")
 End Try
 End Sub
End Module

Data Reader
DataReader is a read-only, forward only and connected record set from the database. In DataReader, database connection is
opened until the object is closed unlike DataSet. Using DataReader we can able to access one row at a time so there it is not
required storing it in memory. In one DataReader we can get more than one result set and access it one by one

 SqlDataReader Object provides a connection oriented data access to the SQL Server

data sources. The method ExecuteReader() in the SqlCommand Object send the SQL statements to SqlConnection

Object and populate a SqlDataReader Object based on the SQL statement.

Dim sqlReader As SqlDataReader = sqlCmd.ExecuteReader ()

When the ExecuteReader method in SqlCommand Object execute, it instantiate a SqlClient.SqlDataReader Object.

When started to read from a DataReader it should always be open and positioned prior to the first record. The Read()

method in the DataReader is used to read the rows from DataReader and it always moves forward to a new valid row,

if any row exist . SqlDataReader.Read()

There are two way two ways to read the data which is stored in database. One way is DataSet and other is DataReader.
Dataset works with disconnected mode and DataReader works with connected architecture. DataReader is used only for read
only and forward only so we cannot do any transaction on them. Using DataReader we can able to access one row at a time so
there is no need to storing it in memory.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

ExecuteReader and ExecuteNonQuery method

ExecuteReader: ExecuteReader used for getting the query results as a DataReader object. It is read-only forward only retrieval
of records and it uses select command to read through the table from the first to the last.

 Dim reader As SqlDataReader
 reader = Command. ExecuteReader ()
 While reader. Read ()
 MsgBox (reader.Item (0))
 End While
 reader.Close ()

ExecuteNonQuery: ExecuteNonQuery used for executing queries that does not return any data. It is used to execute the sql
statements like update, insert, delete etc. ExecuteNonQuery executes the command and returns the number of rows affected.
 Dim Value as Integer
 Command = New SqlCommand (Sql, Connection)
 Value = Command. ExecuteNonQuery ()
Example

Dim str As String = "Data Source=SqlServer; Initial catalog=MYD; Integrated Security=True"

Dim con As New SqlConnection (str)
 Try
 con.Open ()
 Dim cmd As SqlCommand = con.CreateCommand
 cmd.CommandText = "SELECT Sname FROM Student"
 Dim dr As SqlDataReader = command. ExecuteReader
 If dr.HasRows Then
 While dr.Read
 Console.WriteLine (reader(0).ToString)
 End While
 End If
 dr.Close()
 cmd.Dispose()
 Catch ex As Exception
 Console.Write(ex.Message)
 Finally
 con.Close()
End Try

Data Adapter
SqlDataAdapter is a part of the ADO.NET Data Provider and it resides in the System.Data.SqlClient namespace. It

provides the communication between the Dataset and the SQL database. We can use SqlDataAdapter Object in

combination with Dataset Object.

 SqlDataAdapter Object and DataSet objects are combining to perform both data

access and data manipulation operations in the SQL Server Database. When the user perform the SQL operations like

Select , Insert etc. in the data containing in the Dataset Object , it won't directly affect the Database, until the user

invoke the Update method in the SqlDataAdapter.

 The DataAdapter serves as a bridge between a DataSet and a data source

for retrieving and saving data. The DataAdapter provides this bridge by mapping Fill, which changes the data in the

DataSet to match the data in the data source, and Update, which changes the data in the data source to match the data

in the DataSet.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 DataAdapter.Fill (DataSet)

 DataAdapter.Fill (DataTable)

The Fill method retrieves rows from the data source using the SELECT statement specified by an associated

SelectCommand property. If the data adapter encounters duplicate columns while populating a DataTable, it

generates names for the subsequent columns.

It differs from the DataReader, in that the DataReader uses the Connection object to access the data directly,

without having to use a DataAdapter. The DataAdapter essentially decouples the DataSet object from the actual

source of the data, whereas the DataReader is tightly bound to the data in a read-only fashion.

Example

Private Sub BindGrid ()
 Dim constring As String = "Data Source=SqlServer; Initial catalog=MYD; Integrated Security=True"

 Dim con As New SqlConnection (constring)
 Dim cmd As New SqlCommand ("SELECT * FROM STUDENT", con)
 cmd. CommandType = CommandType. Text
 Dim da As New SqlDataAdapter (cmd)
 Dim ds As New DataSet ()
 da.Fill (ds)
 dataGridView1.DataSource = ds.Tables (0)
 End Sub

DataGridView Control
It is a control which provides an interactive user-interface to show information graphically from database. The end-user can
add, edit and remove columns. And also, they can edit the content if the permission is given. The DataGridView control looks
like the Excel spreadsheet, which can be added onto the form so that the end-user can use it for specific purposes.

The DataGridView control is basically made of rows and columns. Additionally, every column has its header. Vertical and
horizontal scrollbars appear automatically whenever they are needed. The scrollbars are used to scroll through the pages to
see more content. So a DataGridView control may contain information of multiple pages.

DataGridView provides a visual interface to data. It is an excellent way to display and allow editing for your data. It is accessed
with VB.NET code. Data edited in the DataGridView can then be persisted in the database.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Important DataGridView Properties

DataMember Gets or sets the name of the list or table in the data source for which the DataGridView is displaying
data.

DataSource Gets or sets the data source that the DataGridView is displaying data for.

RowCount Gets or sets the number of rows displayed in the DataGridView.

Rows Gets a collection that contains all the rows in the DataGridView control.

EditMode Gets or sets a value indicating how to begin editing a cell.

Example

 Dim str As String = "Data Source=SqlServer; Initial catalog=MYDB; Integrated Security=True"

 Dim sql As String = "SELECT * FROM Authors"

 Dim con As New SqlConnection(str)

 Dim da As New SqlDataAdapter (sql, con)

 Dim ds As New DataSet ()

 con.Open ()

 da.Fill (ds, "Authors_table")

 con.Close ()

 DataGridView1.DataSource = ds

 DataGridView1.DataMember = "Authors_table"

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

Validation Controls
One of the most common requests for any Web application is the ability to perform client-side validation of input.
There are a number of reasons for performing validation on the client. First, you give the user a better experience. If you can
immediately notify the user that he did not fill in a required field, you just saved him the time it would have taken to submit
the form, have the server generate a message to inform him of the problem, and return the error message to him. In addition,
using client-side validation lessens network traffic and server load by never sending invalid data to the server. Microsoft
provides a series of validation controls in ASP.NET that automate client side form validation. The validation controls in ASP.NET
are smart; they will perform the validation at the client if possible.

Types of Validators

• RequiredFieldValidator: This validator requires that its ControlToValidate property have a value. In other
 words, the control to which this validator is tied cannot be left blank.

• CompareValidator: This validator compares the value the user entered with a value you specify. Your specified value could
be a constant, a calculated value, or a value from a database.

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to compare with.

ValueToCompare It specifies the constant value to compare with.

Operator
It specifies the comparison operator, the available values are: Equal, NotEqual,
GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and DataTypeCheck.

• RangeValidator: This validator requires that entered data be within a particular range. The range can be numeric, dates,
currency, or alphabetical.

Properties Description

Type
It defines the type of the data. The available values are: Currency, Date, Double, Integer,
and String.

MinimumValue It specifies the minimum value of the range.

MaximumValue It specifies the maximum value of the range.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

• RegularExpressionValidator: Regular expressions are also known as masks. This validator can make sure that entered data
matches a particular format, such as the format of phone numbers and Social Security numbers.

commonly used syntax constructs for regular expressions:

Character Escapes Description

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.

\n Matches a new line.

\ Escape character.

• CustomValidator: This validator uses code you write yourself to validate the data. The CustomValidator control allows
writing application specific custom validation routines for both the client side and the server side validation.

• ValidationSummary: The ValidationSummary control does not perform any validation but shows a summary of

 all errors in the page. The summary displays the values of the ErrorMessage property of all validation controls

 that failed validation. The following two mutually inclusive properties list out the error message:

 ShowSummary: shows the error messages in specified format.

 ShowMessageBox: shows the error messages in a separate window.
--

Data Binding Controls
 Every ASP.NET web form control inherits the DataBind method from its parent Control

class, which gives it an inherent capability to bind data to at least one of its properties. This is known as simple data

binding or inline data binding. Simple data binding involves attaching any collection (item collection) which

implements the IEnumerable interface, or the DataSet and DataTable classes to the DataSource property of the

control.

Quantifiers could be added to specify number of
times a character could appear.

Quantifier Description

* Zero or more matches.

+ One or more matches.

? Zero or one matches.

{N} N matches.

{N,} N or more matches.

{N,M} Between N and M matches.

Apart from single character match, a class of characters could be specified that can be matched, called the
metacharacters.

Metacharacters Description

. Matches any character except \n.

[abcd] Matches any character in the set.

[^abcd] Excludes any character in the set.

[2-7a-mA-M] Matches any character specified in the range.

\w Matches any alphanumeric character and underscore.

\W Matches any non-word character.

\s Matches whitespace characters like, space, tab, new line etc.

\S Matches any non-whitespace character.

\d Matches any decimal character.

\D Matches any non-decimal character.

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

 On the other hand, some controls can bind records, lists, or columns of data into their structure through

a DataSource control. These controls derive from the BaseDataBoundControl class. This is called declarative data

binding.

 The data source controls help the data-bound controls implement functionalities such as,

sorting, paging, and editing data collections.

The BaseDataBoundControl is an abstract class, which is inherited by two more abstract classes:
 DataBoundControl
 HierarchicalDataBoundControl

The abstract class DataBoundControl is again inherited by two more abstract classes:
 ListControl
 CompositeDataBoundControl

The controls capable of simple data binding are derived from the ListControl abstract class and these controls are:
 BulletedList
 CheckBoxList
 DropDownList
 ListBox
 RadioButtonList

The controls capable of declarative data binding (a more complex data binding) are derived from the abstract class

CompositeDataBoundControl. These controls are:
 DetailsView
 FormView
 GridView
 RecordList

Simple Data Binding

Simple data binding involves the read-only selection lists. These controls can bind to an array list or fields from a

database. Selection lists takes two values from the database or the data source; one value is displayed by the list and

the other is considered as the value corresponding to the display.

Let us take up a small example to understand the concept. Create a web site with a bulleted list and a SqlDataSource

control on it. Configure the data source control to retrieve two values from your database

Choosing a data source for the bulleted list control involves:

 Selecting the data source control
 Selecting a field to display, which is called the data field
 Selecting a field for the value

 CHRISTIAN EMINENT COLLEGE, INDORE
 (Academy of Management, Professional Education and Research)

 An Autonomous Institution Accredited with ‘A’ Grade by NAAC

Department of Computer Science & Electronics

When the application is executed, check that the entire title column is bound to the bulleted list and displayed.

Declarative Data Binding

The data binding involves the following objects:

 A dataset that stores the data retrieved from the database.

 The data provider, which retrieves data from the database by using a command over a connection.

 The data adapter that issues the select statement stored in the command object; it is also capable of update the

data in a database by issuing Insert, Delete, and Update statements.

Relation between the data binding objects:

